Uncertainties in blood flow calculations and data

Rachael Brag and Pierre Gremaud (NCSU)

August 10, 2014
Goals

1. introduce methods from machine learning
 ▶ *Machine learning (...) deals with the construction and study of systems that can learn from data, rather than follow only explicitly programmed instructions.* Wikipedia
 ▶ *Machine learning is the science of getting computers to act without being explicitly programmed.* E. Ng

 \[
 x \rightarrow \text{nature} \rightarrow y
 \]

 math, stat:
 \[
 x \rightarrow \text{linear regression, other models} \rightarrow y
 \]

 machine learning:
 \[
 x \rightarrow \quad \rightarrow y
 \]

2. illustrate new concepts on Cerebral Blood Flow (CBF) studies
Vascular territories

Cerebral Vascular Territories

- Posterior inferior cerebellar artery (PICA)
- Anterior spinal artery branches
- Posterior spinal artery branches
Vascular territories

Cerebral Vascular Territories

- Basilar artery
- Posterior inferior cerebellar artery (PICA)
- Anterior spinal artery branches
- Posterior spinal artery branches
Vascular territories

Cerebral Vascular Territories

- Superior cerebellar artery (SCA)
- Basilar artery
- Anterior inferior cerebellar artery (AICA)
- Posterior inferior cerebellar artery (PICA)
Vascular territories

Cerebral Vascular Territories

- Anterior choroidal artery
- Middle cerebral artery (MCA)
- Lateral lenticulostriate arteries
- Posterior cerebral artery (PCA)
- Superior cerebellar artery (SCA)
- Basilar artery
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Anterior choroidal artery
- Middle cerebral artery (MCA)
- Lateral lenticulostriate arteries
- Posterior cerebral artery (PCA)
- Superior cerebellar artery (SCA)
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Medial lenticulostriate arteries
- Anterior choroidal artery
- Middle cerebral artery (MCA)
- Lateral lenticulostriate arteries
- Posterior cerebral artery (PCA)
- Superior cerebellar artery (SCA)
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Anterior choroidal artery
- Middle cerebral artery (MCA)
- Lateral lenticulostriate arteries
- Posterior cerebral artery (PCA)
Vascular territories

Cerebral Vascular Territories

- **Anterior cerebral artery (ACA)**
- **Middle cerebral artery (MCA)**
- **Posterior cerebral artery (PCA)**
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Middle cerebral artery (MCA)
- Posterior cerebral artery (PCA)
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Middle cerebral artery (MCA)
- Posterior cerebral artery (PCA)
Vascular territories

Cerebral Vascular Territories

- Anterior cerebral artery (ACA)
- Middle cerebral artery (MCA)
Problem

Can we estimate local CBF

- cheaply
- continuously and in real time
- accurately
- or at least with "error bars"?
Problem

cheap: Transcranial Doppler (TCD)

expensive: Magnetic Resonance Imaging (MRI)

Problem

This should agree with that
Problem

This →

Oy!

"should" agree with that
"It is intriguing that methods measuring the same physiological parameter do not correlate." *Henriksen et al. J. Magn. Res. Imaging, 2012*

"should" agree with that
Hypothesis

different patients react differently to the measurement protocols

so...

- let’s group patients into "like" groups
- let’s apply local "models" in each group

to do so, we let the "data speak"....
Overview

- linear and nonlinear approximations
- local regression and trees
- classification
- random forests
- back to CBF, UQ and other acronyms
Mathematical challenge

- predictor variable (vector): \(x = [x_1, \ldots, x_d] \)
- response variable (scalar): \(y \)

WANTED: value (or distribution) of \(y \) for given \(x \), i.e.

\[
y = f(x)
\]

CHALLENGE: we do not have \(f \) but "just" data

\[
[x_i, y_i] = [x_{i,1}, \ldots, x_{i,d}, y_i], \quad i = 1, \ldots, N
\]

For us: \(d = 14 \), \(N = \text{number of patients} \approx 200 \)
Approximation 101: linear

"Pretend" we know f and $x \in \Omega = [0, 1]^d$

- partition Δ of Ω into cells ω
- piecewise constant (to simplify) approximation

$$f_h(x) = \sum_{\omega \in \Delta} c_\omega \chi_\omega(x)$$

- best constants: $c_\omega = \frac{1}{|\omega|} \int_\omega f(x) \, dx = \text{mean of } f \text{ on } \omega$

- well know result:

$$\| f - f_h \| \leq C(d)N^{-1/d} \| \nabla f \|$$

$N = m^d = \text{number of cubes of length } h = 1/m$
Choose **better partitions** based on f/data

- "equivariation" partition (Kahane 1961)
- Easy in 1d (partition depends on f)
- "optimal" partitions in higher dim **not doable**

![Graph showing the partitioning process](image-url)
Minimization \(\rightarrow\) recursive partitioning

hard

\[
\begin{align*}
 x_1 &= \omega_1 \\
 x_2 &= \omega_2 \\
 t_1 &= \omega_3 \\
 t_2 &= \omega_4 \\
 t_3 &= \omega_5 \\
 t_4 &= \omega_6 \\
 t_5 &= \omega_7
\end{align*}
\]

easy

\[
\begin{align*}
 x_1 &= \omega_1 \\
 x_2 &= \omega_2 \\
 t_1 &= \omega_3 \\
 t_2 &= \omega_4 \\
 t_3 &= \omega_5 \\
 t_4 &= \omega_6 \\
 t_5 &= \omega_7
\end{align*}
\]
Minimization \rightarrow recursive dyadic partitioning
Minimization \rightarrow recursive dyadic partitioning

\[
\begin{align*}
x_1 &< 0.3 \\
\omega_1 & \quad \omega_2 & \quad \omega_3 \\
\quad x_2 &< 0.7 & \quad x_1 &< 0.5 \\
\quad \omega_4 & \quad x_2 &< 0.2 \\
\quad \quad \omega_5 & \quad x_1 &< 0.8 \\
\quad \quad \omega_6 & \quad \omega_7 \\
\end{align*}
\]
Trees and data

- loop on split variables $x_j, j = 1, 2, \ldots$
 - loop on split split values s
 - $\omega_1(j, s) = \{x; x_j \leq s\}$, $\omega_2(j, s) = \{x; x_j > s\}$
 - error = $\min_{j, s} \left\{ \sum_{x_i \in \omega_1(j, s)} (y_i - c_1)^2 + \sum_{x_i \in \omega_2(j, s)} (y_i - c_2)^2 \right\}$
 - end
- end

![Baby tree diagram](image)

$x_1 < .3$

$\omega_1 \quad \omega_2$
Regression tree

1. consider all binary splits on every predictor
2. select split with lowest MSE and $|\text{child node}| < \text{MinLeaf}$
3. impose split
4. repeat recursively for child nodes

Stop if any of the following holds

- node is pure (MSE $< \text{qetoler} \times \text{MSE}(\text{full data})$)
- fewer than MinParent observations in node
- $|\text{child node}| < \text{MinLeaf}$
MATLAB example

» LOAD CARSMALL
» \text{\texttt{X = [HORSEPOWER W\textit{EIGHT}];}}
» \text{\texttt{RTREE = FITRTREE(X,MPG);}}
What about categorical variables? (gender (F/M), diabetes (Y/N), hypertensive (Y/N), car manufacturer (AMC/Aston Martin/Ferrari/Datsun/Peugeot/Rolls Royce/Yugo etc...)

MSE \rightarrow Gini impurity

$$
\sum_{k=1}^{K} p_{mk} (1 - p_{mk})
$$

$\rho_{mk} = \frac{1}{|\omega_m|} \sum_{x_i \in \omega_m} \delta_{x_i, k} = \text{fraction of items from class } k \text{ in } \omega_m$

how often a randomly chosen element from ω_m would be incorrectly labeled if it were randomly labeled according to the distribution of classes in ω_m

issues with mixed data...
Does this stuff work?

Yes! MSE divided by ≈ 4
What’s good about trees

1. easy to understand
What’s good about trees

1. easy to understand
2. can handle both categorical and numerical predictors
3. can handle missing data
4. fast
5. no model!
What’s not so good about trees

1. trees are unstable
2. predictions are not smooth
3. biases toward predictor variables with high variation
4. no model \Rightarrow little analysis
Doing better: bagging

bootstrap aggregating

- for $b = 1$ to B
 - draw bootstrap sample of size N from training data (uniformly and with replacements)
 - grow tree T_b to bootstrapped data
- end
- average to get prediction for x:

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$$
Issues with bagging

- trees T_b’s are correlated: i.d. but not i.i.d.
- i.i.d: $\text{var}(\sum_i X_i) = \sum_i \text{var}(X_i) \Rightarrow$
 \[
 \text{var}(\hat{f}(x)) = \frac{\sigma^2}{B}
 \]
- correlated i.d:
 $\text{var}(\sum_i X_i) = \sum_i \text{var}(X_i) + 2 \sum_{i<j} \text{cov}(X_i, X_j) \Rightarrow$
 \[
 \text{var}(\hat{f}(x)) = \rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2
 \]
- $\rho \downarrow$ and $B \uparrow \Rightarrow$ variance \downarrow
Random forests (Breiman 2001)

decrease tree correlation by splitting based on \(m < d \) variables
error check on training data

- for each \((x_i, y_i)\), construct RF predictor by averaging **only** trees from bootstrap samples **not containing** \((x_i, y_i)\)

\[m = 5 < d = 14 \text{ wins} \]
Results for our problem

MSE divided by ≈ 8
But wait, there is more...

Trees can be used to assess variable importance

1. **Gini importance**: at each split, MSE reduction attributed to split variable and accumulated over all trees for each variable ⇒ **bias** toward high variability predictors

2. **permutation importance**: in each tree, compute MSE for OOB samples; then randomly sample values of variable and compute increase in OOB MSE

room for improvements and analysis...
Clustering

- consider each pair of patients
- count number of times pair belongs to same tree in the forest

⇒ proximity matrix A

- clustering algorithms (spectral or other) can be applied to A
Conclusion

- machine learning: powerful for "messy" problems
- simple, efficient
- may be hard to interpret and analyze
- low hanging fruits for mathematicians...
More references

literature

Cerebral blood flow measurements: ... , R. Bragg, P.A. Gremaud, V. Novak, in preparation

software

MATLAB FITENSEMBLE from the stat toolbox

R RANDOMFOREST package

java http://www.cs.waikato.ac.nz/ml/weka/