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Goals

1. introduce methods from machine learning
I Machine learning (...) deals with the construction and study

of systems that can learn from data, rather than follow only
explicitly programmed instructions. Wikipedia

I Machine learning is the science of getting computers to act
without being explicitly programmed. E. Ng

x −→ nature −→ y
math, stat: x −→ linear regression, other models −→ y

machine learning: x −→ −→ y
↘ regression trees ↗

2. illustrate new concepts on Cerebral Blood Flow (CBF)
studies
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Problem

Can we estimate local CBF

I cheaply
I continuously and in real time
I accurately
I or at least with "error bars"?



Problem

cheap: Transcranial Doppler
(TCD)

wikipedia

expensive: Magnetic Resonance
Imaging (MRI)

Mangia et al., J. Cereb. Blood Flow Metab., 32 (2012)



Problem

This −→

• patient

↑
"should" agree with that
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This −→
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• patient
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Problem

This −→

"It is intriguing that
methods measuring the
same physiological
parameter do not
correlate." Henriksen et al.
J. Magn. Res. Imaging,
2012

• patient

↑
"should" agree with that



Hypothesis

different patients react differently to the measurement protocols

so...

I let’s group patients into "like" groups
I let’s apply local "models" in each group

to do so, we let the "data speak"....



Overview

I linear and nonlinear approximations
I local regression and trees
I classification
I random forests
I back to CBF, UQ and other acronyms



Mathematical challenge

I predictor variable (vector): x = [x1, . . . , xd ]

I response variable (scalar): y

WANTED: value (or distribution) of y for given x , i.e.

y = f (x)

CHALLENGE: we do not have f but "just" data

[xi , yi ] = [xi,1, . . . , xi,d , yi ], i = 1, . . . ,N

For us: d = 14, N = number of patients ≈ 200



Approximation 101: linear

"Pretend" we know f and x ∈ Ω = [0,1]d

I partition ∆ of Ω into cells ω
I piecewise constant (to simplify) approximation

fh(x) =
∑
ω∈∆

cωχω(x)

I best constants: cω = 1
|ω|

∫
ω f (x) dx = mean of f on ω

I well know result:

‖f − fh‖ ≤ C(d)N−1/d‖∇f‖

N = md = number of cubes of length h = 1/m



Approximation 102: nonlinear

Choose better partitions based on f /data

I "equivariation" partition
(Kahane 1961)

I easy in 1d (partition
depends on f )

I "optimal" partitions in
higher dim not doable
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Minimization −→ recursive partitioning
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Minimization −→ recursive dyadic partitioning
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Minimization −→ recursive dyadic partitioning
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Trees and data
I loop on split variables xj , j = 1,2, . . .

I loop on split split values s
I ω1(j, s) = {x ; xj ≤ s}, ω2(j, s) = {x ; xj > s}
I error = minj,s

{∑
xi∈ω1(j,s)(yi − c1)

2 +
∑

xi∈ω2(j,s)(yi − c2)
2
}

I end
I end
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Regression tree

1. consider all binary splits on every predictor
2. select split with lowest MSE and |child node| < MinLeaf
3. impose split
4. repeat recursively for child nodes

Stop if any of the following holds

I node is pure (MSE < qetoler× MSE(full data))
I fewer than MinParent observations in node
I |child node| < MinLeaf



MATLAB example
» LOAD CARSMALL

» X = [HORSEPOWER WEIGHT];
» RTREE = FITRTREE(X,MPG);



Classification tree

I What about categorical variables? (gender (F/M), diabetes (Y/N), hypertensive

(Y/N), car manufacturer (AMC/Aston Martin/Ferrari/Datsun/Peugeot/Rolls Royce/Yugo etc...)
I MSE −→ Gini impurity

K∑
k=1

pmk (1− pmk )

I pmk = 1
|ωm|

∑
xi∈ωm

δxi ,k = fraction of items from class k in ωm
I how often a randomly chosen element from ωm would be incorrectly labeled if it were randomly

labeled according to the distribution of classes in ωm

I issues with mixed data...



Does this stuff work?

Yes! MSE divided by ≈ 4



What’s good about trees

1. easy to understand



What’s good about trees

1. easy to understand
2. can handle both categorical and numerical predictors
3. can handle missing data
4. fast
5. no model!



What’s not so good about trees

1. trees are unstable
2. predictions are not smooth
3. biases toward predictor variables with high variation
4. no model⇒ little analysis



Doing better: bagging

bootstrap aggregating
I for b = 1 to B

I draw bootstrap sample of size N from training data
(uniformly and with replacements)

I grow tree Tb to bootstrapped data
I end
I average to get prediction for x :

f̂ (x) =
1
B

B∑
b=1

Tb(x)



Issues with bagging

I trees Tb’s are correlated: i.d. but not i.i.d.
I i.i.d: var(

∑
i Xi) =

∑
i var(Xi)⇒

var(f̂ (x)) =
σ2

B

I correlated i.d:
var(

∑
i Xi) =

∑
i var(Xi) + 2

∑
i<j cov(Xi ,Xj)⇒

var(f̂ (x)) = ρσ2 +
1− ρ

B
σ2

I ρ ↓ and B ↑ ⇒ variance ↓



Random forests (Breiman 2001)

decrease tree correlation by splitting based on m < d variables
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OOB errors
error check on training data

I for each (xi , yi), construct RF predictor by averaging only
trees from bootstrap samples not containing (xi , yi)
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Results for our problem
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But wait, there is more...

Trees can be used to assess variable importance
1. Gini importance: at each split, MSE reduction attributed to

split variable and accumulated over all trees for each
variable⇒ bias toward high variability predictors

2. permutation importance: in each tree, compute MSE for
OOB samples; then randomly sample values of variable
and compute increase in OOB MSE

room for improvements and analysis...



Variable importance
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Clustering

I consider each pair of patients
I count number of times pair belongs to same tree in the

forest

⇒ proximity matrix A

I clustering algorithms (spectral or other) can be applied to A
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Conclusion

I machine learning: powerful for "messy" problems
I simple, efficient
I may be hard to interpret and analyze
I low hanging fruits for mathematicians...



More references

literature

Statistical modeling: the two cultures , L. Breiman, Statistical
Sc., 16 (2001), p. 199–231.

The elements of statistical learning , T. Hastie, R. Tibshirani, J.
Friedman, Second Edition, Springer Series in
Statistics, 2009

Cerebral blood flow measurements: ... , R. Bragg, P.A.
Gremaud, V. Novak, in preparation

software

MATLAB FITENSEMBLE from the stat toolbox
R RANDOMFOREST package

java http://www.cs.waikato.ac.nz/ml/weka/
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