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Predictive Science
Components: All involve uncertainty 

• Experiments
• Models
• Simulations

• Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University. 

• Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial 
Statistician.

• Computational results are believed by no one, except the person who wrote the code, 
source anonymous, quoted by Max Gunzburger, Florida State University.

• I have always done uncertainty quantification.  The difference now is that it is 
capitalized. Bill Browning, Applied Mathematics Incorporated.



Example 1: Weather Models
Challenges:
• Coupling between temperature, pressure 
gradients, wind, precipitation, aerosol 
species, etc.;

• Models and inputs contain uncertainties;
• Numerical grids are necessarily larger 
than many phenomena; e.g., clouds
• Sensors have limited accuracy and 
positions may be uncertainty; e.g., 
weather balloons, ocean buoys.

Goal:
• Assimilate data to quantify uncertain 
initial conditions and parameters;
• Make predictions with quantified 
uncertainties.



Equations of Atmospheric Physics
Conservation Relations:
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Ensemble Predictions
Ensemble Predictions:

Cone of Uncertainty:

00 UTC on August 26, 2005 12 UTC on August 26, 2005

General Questions:
• What is expected rainfall on July 29?
• What are high and low temperatures?



Example 2: Climate Models
Strategy: Compute global energy 
balance

• Forced boundary value problem rather 
than initial value problem associated with 
weather models;
• This can reduce effects of chaotic 
dynamics.
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Climate Models – Uncertainty Quantification
Subset of Uncertainties listed by IPCC:
• Scenarios must be used for four ranges of demographic, economic, and 
technological growth.
• ``The magnitude of carbon dioxide emissions from land-use change and 
methane emissions from individual sources remain as key uncertainties.’’
• ``Aerosol impacts on the magnitude of the temperature response, on clouds 
and on precipitation remain uncertain.'’
• ``Models differ considerably in their estimates of the strength of different 
feedbacks in the climate system, particularly cloud feedbacks, oceanic heat 
uptake and carbon cycle feedbacks, although progress has been made in 
these areas.'’
• ``Large-scale ocean circulation changes beyond the 21st century cannot be 
reliably assessed because of uncertainties in the meltwater supply from the 
Greenland ice sheet and model response to the warming.’’

• ``Projections of climate change and its impacts beyond 2050 are strongly 
scenario- and model-dependent, and improved projections would require 
improved understanding of sources of uncertainty and enhancements in 
systematic observation networks.''



Example 3: HIV Model for Characterization and Control Regimes
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Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 +Kb
E � dE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 +Kd
E � �EE

HIV Model:

Compartments: 

Notes: 21 parameters 
[Adams, Banks et al., 2005, 
2007] 



Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , y

ij

1 ), i =
1, . . . , N

j

1 and (potentially diÆerent) viral RNA data pairs (tij2 , y

ij

2 ), i = 1, . . . , N

j

2 .
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Example: Upper and lower limits to assay sensitivity 



Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area. 



Relation Between UQ, Verification and Validation



First Challenge: Terminology and Notation
Terminology:
• Inputs: Parameters, initial conditions, boundary conditions, exogenous forces; 
e.g., Parameters in material models, initial conditions in weather models.

• Outputs or Responses: Quantities that we experimentally or numerically measure; 
e.g., Viral load, 

• Quantities of Interest: Statistical quantity that we want to monitor; e.g., average 
temperature, peak nuclear power plant operating temperature.

Notation: Input notation can vary even within disciplines!

• Math Control Community:

• Math Reduced-Order Community:

• Statistics: 

• Nuclear Engineering:

q = [q1, . . . , qp]

p = [p1, . . . , pq]

✓ = [✓1, . . . , ✓d]
↵ = [↵1, . . . ,↵k]

Notation: Same variability for outputs and quantities of interest 

• Math Control Community: 

• Nuclear Engineering: 

⌫ or y

R



First Challenge: Terminology and Notation
Terminology:
• Linearly parameterized problems: e.g., portfolio model

§ Rarely occur in applications except image processing

• Nonlinearly parameterized problems: typical case

§ Differs from linear or nonlinear in state; e.g., spring model 

y = c1q1 + c2q2

Inputs: q = [k, y0]

Response: Displacement y(t) = y0 cos(
p
k · t)

Note:
• Linear state dependence

• Nonlinear parameter dependence

Notation: ẏ ⌘ dy

dt
, ÿ ⌘ d2y

dt2

)
ÿ(t) + ky(t) = 0

y(0) = y0 ,
dy

dt
(0) = 0

d2y(t)

dt2
+ ky(t) = 0

y(0) = y0 ,
dy

dt
(0) = 0



Model Calibration and Uncertainty Propagation
Sources of Uncertainty:

• Model

• Parameters

• Sensor measurements 

• Initial/boundary conditions

Strategy:
• Quantify uncertainty in parameters

• Propagate uncertainty through model

Parameters: Reduced set

Point Estimates: Ordinary least 
squares – Kevin Flores and Alun 
Lloyd yesterday

Note: Scaling critical since parameter values vary by 8 orders of magnitude.
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Example: HIV model

q = [bE , �, d1, k2,�1,Kd]

tj

�j
q0 = argmin

q

1

2

NX

j=1

[�j � f(tj , q)]
2



Bayesian Model Calibration
Bayesian Model Calibration: 
• Parameters assumed to be random variables

Bayes’ Theorem:

P (A|B) =
P (B|A)P (A)

P (B)

Example: Coin Flip
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Bayesian Model Calibration

Bayesian Model Calibration: 
• Parameters considered to be random 
variables with associated densities. 

Problem: 
• Often requires high dimensional integration;

o e.g., p = 6-23 for HIV model

o p = hundreds to thousands for some models

Strategies: 
• Sampling methods

• Sparse grid quadrature techniques

• Details to come in Saturday presentations by 
Daniela Calvetti, Andrea Arnold, Franz Hamilton. 

⇡(q|�) = ⇡(�|q)⇡0(q)R
Rp ⇡(�|q)⇡0(q)dq



Delayed Rejection Adaptive Metropolis (DRAM)
Proposal DistributionAlgorithm: [Haario et al., 2006]

J(q⇤|qk�1) = N(qk�1, V )
1. Determine q0 = argmin

q

NX

i=1

[�i � f(ti, q)]
2

2. Construct covariance estimate V

3. For k = 1, · · · ,M

(a) Construct candidate

q⇤ ⇠ N(qk�1, V )

(b) Compute

SSq⇤ =
NX

i=1

[�i � f(ti, q
⇤)]2

⇡(�|q) = 1

(2⇡�2)n/2
e�SSq/2�

2

(c) Compute

↵(q⇤|qk�1) = min
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1, e�[SSq⇤�SSqk�1 ]/2�

2
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(f) Accept q⇤ with probability ↵

4. Update covariance as samples accepted



Bayesian Model Calibration – HIV Example

Parameter Chains and Densities:
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HIV Model:



Bayesian Model Calibration – HIV Example
Joint Sample Points:

Issues:
• Model parameters often correlated.

• Single-valued joint plots can indicate non-identifiable parameters (see talks by  
Marisa Eisenberg and Chris Durden).

• Bayesian methods feasible for non-identifiable parameters if prior is tight. 



Propagation of Uncertainty in Models – HIV Example
HIV Example: Ṫ1 = �1 � d1T1 � (1� ")k1V T1
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Parameter Densities:

General Strategy



DRAM to Construct Prediction Intervals
Advantages:
• No additional cost for DRAM if interpolating;

• One of few techniques for correlated 
parameters; e.g., Polynomial chaos requires 
mutually independent parameters or joint 
density.

• Does not require Gaussian densities;

• Incorporates both parameter and 
measurement uncertainties.

Samples from Chain Data, Credible Intervals and 
Prediction Intervals

Non-Gaussian Credible and 
Prediction Intervals

Disadvantages:
• Slow convergence rate 

• 100-fold more evaluations required 
to gain additional place of accuracy.

• Significant numerical analysis used 
to efficiently propagate densities.

• May require surrogate models.

O‘ (1/
p
M)



Steps in Uncertainty Quantification

Parameter Selection: Required for models with unidentifiable or noninfluential inputs

• e.g., Nuclear neutron transport codes can have 100,000 inputs



Parameter Selection Techniques
First Issue: Parameters often not identifiable in the sense that they are uniquely 
determined by the data (See talks by Marisa Eisenberg and Chris Durdent).

Example: Simple harmonic oscillator

Note: 

Solution: Reformulate problem as Techniques:
• Linear algebra analysis;

o e.g., SVD or QR algorithms

• Local sensitivity analysis

• Global sensitivity analysis

Second Issue: Nuclear neutronics problems can have 100,000 parameters but only 
25-50 are influential.

m
d2z

dt2
+ c

dz

dt
+ kz = f0 cos(!F t)

z(0) = z0 ,
dz

dt
(0) = z1

Parameter sets q = [m, c, k, f0] and q =
h
1, c

m , k
m , f0

m

i
yield same states

d2z

dt2
+ C

dz

dt
+Kz = F0 cos(!F t)

z(0) = z0 ,
dz

dt
(0) = z1

where C = c
m ,K = k

m and F0 = f0
m



Global Sensitivity Analysis
Example: Portfolio model Take

Note:

−10 −5 0 5 10
−10

−5

0

5

10

q1

y

−10 −5 0 5 10
−10

−5

0

5

10

q2

y

Q2 ⇠ N(0,�2
2) with �2 = 3

Q1 ⇠ N(0,�2
1) with �1 = 1

c1 = 2 , c2 = 1

Local Sensitivities: Alun Lloyd

Y = c1Q1 + c2Q2

• Q1 and Q2 represent hedged porfolios

Solutions:
• Response correlation
• Variance methods
• Random sampling of local sensitivities



f0 =

Z

�
f(q)dq
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fij(qi, qj) =
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Variance-Based Methods
Sobol Representation:

Take

subject to

Then

Notation:

Analogy: Taylor or Fourier 
series

Analogy: 
• Derivatives for Taylor
• Orthogonality of sines 
and cosines for Fourier

For now, take Qi ⇠ U(0, 1) and � = [0, 1]p

f(q) = f0 +
pX

i=1
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fi(qi)dqi =

Z 1

0
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0
fij(qi, qj)dqj = 0

q⇠i = [q1, · · · , qi�1, qi+1, · · · , qp]



Variance-Based Methods
Variances: Sobol Indices:

Statistical Interpretation: 
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Morris Screening

Example: Consider uniformly distributed parameters on
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SIR Disease Example
SIR Model:

dS

dt
= �N � �S � �kIS , S(0) = S0

dI

dt
= �kIS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

Susceptible

Infectious

Recovered

Note:
Parameter set q = [�, k, r, �] is not identifiable

Assumed Parameter Distribution:

� ⇠ U(0, 1) , k ⇠ Beta(↵,�) , r ⇠ U(0, 1) , � ⇠ U(0, 1)

Response:

y =

Z 5

0
R(t, q)dt

Infection 
Coefficient

Interaction 
Coefficient

Recovery 
Rate

Birth/death 
Rate



SIR Disease Example
SIR Model:

dS

dt
= �N � �S � �kIS , S(0) = S0

dI

dt
= �kIS � (r + �)I , I(0) = I0

dR

dt
= rI � �R , R(0) = R0

Susceptible

Infectious

Recovered

Typical Realization:



SIR Disease Example
Global Sensitivity Measures:

� k r �

Si 0.0997 0.0312 0.7901 0.1750
STi �0.0637 �0.0541 0.5634 0.2029

µ⇤
i (⇥103) 0.2532 0.2812 2.0184 1.2328

�i (⇥103) 0.9539 1.6245 6.6748 3.9886

Sobol

Morris

Result: Densities for R(tf ) at tf = 5

Note: Can fix non-influential 
parameters



Steps in Uncertainty Quantification

Surrogate Models: Similar goals and strategies as used for control implementation

• e.g., POD, Koopman representations
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Surrogate Models
Problem: Difficult to obtain sufficient number of realizations of discretized PDE 
models for Bayesian model calibration and uncertainty propagation.

Solution: Construct surrogate models
• Also termed data-fit models, response surface models, emulators, meta-models

• Projection-based models often called reduced-order models



Surrogate Models: Motivation
Example: Consider the model

@u
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+

@
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2
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2
= f(q)

Boundary Conditions

Initial Conditions

with the response
x, y, z

t

1

y(q) =

Z 1

0

Z 1

0

Z 1

0

Z 1

0
u(t, x, y, z; q)dxdydzdt

Notes:
• Requires approximation of PDE in 3-D

• What would be a simple surrogate? 



Surrogate Models
Example: Consider the model
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t

1
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Z 1

0

Z 1
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Z 1

0

Z 1

0
u(t, x, y, z; q)dxdydzdt

Surrogate: Quadratic
ys(q) = (q � 0.25)2 + 0.5



Data-Fit Models
Notes:
• Often termed response surface models, 
emulators, meta-models;

• Rely on interpolation or regression;

• Data can consist of high-fidelity simulations 
or experiments.

• Common techniques: polynomial models, 
kriging (Gaussian process regression), 
stochastic collocation.

Statistical Model: 

Example:

ym = fs(q
m) + �m , m = 1, · · · ,M

y = f(q)

Strategy: Consider high fidelity model 

y = f(q)

with M model evaluations

ym = f(qm) , m = 1, · · · ,M

fs(q): Emulator for f(q)



Data-Fit Models – Polynomial Emulator
Quadratic Emulator: Regression

Least Squares Estimate:

Deterministic System:

Notes:
• Good choice for optimization;

• Accurate approximation may require 
high-order polynomials;

• Does not provide uncertainty bounds 
for uncertainty quantification.

fs(q;�) = �0 + �1q + �2q
2

y
obs

= X�

� = [XTX]�1XT y
obs

Quadratic

R
es

po
ns

e

Data

Parameters q

Emulator



Data-Fit Models – Stochastic Collocation
Strategy: Consider high fidelity model 

y = f(q)

with M model evaluations

ym = f(qm) , m = 1, · · · ,M

Collocation Surrogate:

ys(q) = fs(q) =
MX

m=1

ymLm(q)

Lm(q) =
MY

j=0
j 6=m

q � q j

qm � q j
=

(q � q 1) · · · (q � qm�1)(q � qm+1) · · · (q � qM )

(qm � q 1) · · · (qm � qm�1)(qm � qm+1) · · · (qm � qM )

Note:

Lm(qj) = �jm =

⇢
0 , j 6= m
1 , j = m

Result: ys(qm) = f(qm)

where Lm(q) is a Lagrange polynomial, which in 1-D is represented by

Note: Method is nonintrusive and 
treats code as blackbox.

ym



Data-Fit Models – Gaussian Process Emulator
Kriging (Gaussian Process):

Error Bounds:

fs(q;�) = gT (q)� + Z(q)

cov(Z(qi), Z(qj)] = �2R(qi, qj) + �2
0�(q

i, qj)

R(qi, qj) = exp

 
�

pX

k=1

|✓k(qik � qjk)|
�k

!



Surrogate Models – Grid Choice
Example: Consider the Runge function f(q) =

1

1 + 25q2
with points

qj = �1 + (j � 1)
2

M1
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Sparse Grid Techniques
Tensored Grids: Exponential growth Sparse Grids: Same accuracy

p R` Sparse Grid R Tensored Grid R = (R`)p

2 9 29 81

5 9 241 59,049

10 9 1581 > 3⇥ 109

50 9 171,901 > 5⇥ 1047

100 9 1,353,801 > 2⇥ 1095



Steps in Uncertainty Quantification



Quantification of Model Discrepancy – Thin Beam
“Essentially all models are wrong, but some are useful” George E.P. Box

with

Example: Thin beam driven by PZT patches

Euler-Bernoulli Model:

Statistical Model:

Note: 7 parameters, 32 states



Quantification of Model Discrepancy – Thin Beam
Example: Good model fit

Problem: Measurement errors not iid

Model Fit to Data
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Quantification of Model Discrepancy – Thin Beam
Example: Good model fit

Problem: Measurement errors not iid

Result: Prediction intervals wrong

Prediction Intervals and Data

Model Fit to Data

Approaches: 
• GP Model: Inaccurate for extrapolation
• Control-based approaches
• Illustrate first for heat example

• Return to beam in a bit



Quantification of Model Discrepancy – Heat Equation
Example: Steady state heat model

Problem: Correlated residuals

Solution: Consider statistical model

d
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=
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Yi = Ts(xi; q) + �0 + �1xi + �2x
2
i + ⇥i
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Quantification of Model Discrepancy – Heat Equation
Example: Steady state heat model

Issue: Confounding between physical and 
phenomenological components

d

2
Ts

dx

2
=

2(a+ b)

ab

h

k

[Ts(x)� Tamb]

dTs

dx

(0) =
�

k

,

dTs

dx

(L) =
h

k

[Tamb � Ts(L)]

Example: Purely phenomenological

Yi = �0 + �1xi + �2x
2
i + �3x

3
i + �4x

4
i + ⇥i

Result: Cannot provide extrapolatory predictions

Conclusion: Must incorporate prior information about physical parameters 
and model discrepancy term.

Yi = Ts(xi; q) + �(xi) + ⇥i



Quantification of Model Discrepancy – Thin Beam
Partial Solution: “Optimize” calibration interval 

•Use damping/frequency domain results to guide.
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Note: We have 
substantially extended 
calibration regime.Calibrate on [0,1] Calibrate on [0.25,1.25]



Concluding Remarks
Notes:
• Uncertainty quantification critical for large-scale 
biological and physical models.

• UQ requires a synergy between applied mathematics, 
statistics, and domain sciences.

• Model calibration, model selection, uncertainty 
propagation and experimental design are natural in a 
Bayesian framework.

• Goal is to predict model responses with quantified and 
reduced uncertainties.

• Parameter selection and subspace construction is 
critical to isolate identifiable and influential parameters.

• Due to complexity of models, surrogate models are 
required for many applications.

• The quantification of model discrepancy constitutes an 
important research area.

• Algorithms and techniques are new and evolving.
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