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Bayes’ Formula

Stochastic model: Two random variables X ∈ Rn, B ∈ Rm,
where

I B is the observed quantity,

I X is the quantity of primary interest.

Goal: Find the posterior probability density,

πX (x | b) = density of X , given the observation B = b, b = bobserved.



Bayes’ Formula

Prior information: Given the prior density πX (x), encoding our
prior information – or prior belief – about the possible vaues of X .
Likelihood: Assuming that X = x , what would the forward model
predict for the value distribution of B? Encode this information in
πB(b | x).
Evidence: With prior and likelihood, compute

πB(b) =

∫
Rn

πXB(x , b)dx =

∫
Rn

πB(b | x)πX (x)dx .

Bayes’ formula for probability densities

πX (x | b) =
πB(b | x)πX (x)

πB(b)
.



Linear Inverse Problems

Consider the problem of estimating x from

b = Ax + e, A ∈ Rm×n.

Stochastic extension: Write

B = AX + E ,

and assume the noise and prior model

X ∼ N (0,D), E ∼ N (0,C).

Usually it is assumed that X and E are independent. In particular,

E
{
XET

}
= E

{
X
}

E
{
E
}T

= 0.



Linear Inverse Problems

However, this is not necessary, and we may have

E
{
XET

}
= R ∈ Rn×m.

Define a new random variable

Z =

[
X
B

]
∈ Rn+m.

Covariance matrix of Z :

ZZT =

[
X
B

] [
XT BT

]
=

[
XXT XBT

BXT BBT

]
.

Compute the expectation of this matrix.



Linear Inverse Problems

Expectations:
E
{
XXT

}
= D,

E
{
XBT

}
= E

{
X (AX + E )T

}
= E

{
XXTAT + XET

}
= E

{
XXT

}
AT + E

{
XET

}
= DAT + R.

Furthermore,

E
{
BXT

}
= E

{
XBT

}T
= AD + RT,



Linear Inverse Problems

and, finally,

E
{
BBT

}
= E

{
(AX + E )(AX + E )T

}
= E

{
AXXTAT + EXTAT + AXET + EET

}
= ADAT + RTAT + AR + C.

Conclusion:

Cov(Z ) =

[
D DAT + R

AD + RT ADAT + RTAT + AR + C

]
=

[
Γ11 Γ12

Γ21 Γ22

]
.



Schur Complements and Conditioning

Given a Gaussian random variable

Z =

[
X
B

]
∈ Rn+m

with covariance Γ ∈ R(m+n)×(m+n), what is the probability density
of X , given B = b?
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Schur Complements and Conditioning

Assume that X ∼ N (0, Γ), where Γ ∈ Rn×n is a given SPD matrix.
Partitioning of X ,

X =

[
X1

X2

]
∈ Rk

∈ Rn−k .

Question: Assume that X2 = x2 is observed. What is the
conditional probability density of X1,

πX1(x1 | x2) =?



Schur Complements and Conditioning

Write
πX (x) = πX1,X2(x1, x2).

Bayes’ formula: The distribution of unknown part x1 provided that
x2 is known, is

πX1(x1 | x2) ∝ πX1,X2(x1, x2), x2 = x2,observed.

In terms of the Gaussian density,

πX1,X2(x1, x2) ∝ exp

(
−1

2
xTΓ−1x

)
. (1)



Schur Complements and Conditioning

Partitioning of the covariance matrix:

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
∈ Rn×n, (2)

where
Γ11 ∈ Rk×k , Γ22 ∈ R(n−k)×(n−k), k < n,

and
Γ12 = ΓT

21 ∈ Rk×(n−k).



Schur Complements and Conditioning

Precision matrix B = Γ−1.
Partition B:

B =

[
B11 B12

B21 B22

]
∈ Rn×n. (3)

Quadratic form xTBx appearing in the exponential:

Bx =

[
B11 B12

B21 B22

] [
x1

x2

]
=

[
B11x1 + B12x2

B21x1 + B22x2

]
,



Schur Complements and Conditioning

xTBx =
[
xT

1 xT
2

] [ B11x1 + B12x2

B21x1 + B22x2

]
= xT

1

(
B11x1 + B12x2

)
+ xT

2

(
B21x1 + B22x2

)
= xT

1 B11x1 + 2xT
1 B12x2 + xT

2 B22x2

=
(
x1 + B−1

11 B12x2

)T
B11

(
x1 + B−1

11 B12x2

)
+ xT

2

(
B22 − B21B−1

11 B12

)
x2︸ ︷︷ ︸

independent of x1

.



Schur Complements and Conditioning

From this key equation for conditional densities it follows that

πX1(x1 | x2) ∝ exp

(
−1

2

(
x1 + B−1

11 B12x2

)T
B11

(
x1 + B−1

11 B12x2

))
.

Thus the conditional density is Gaussian, with mean

x̄1 = −B−1
11 B12x2,

and covariance matrix
C = B−1

11 .

Question: How to express these formulas in terms of Γ?



Schur Complements and Conditioning

Consider a partitioned SPD matrix Γ ∈ Rn×n.
For any v ∈ Rk , x 6= 0

vTΓ11v =
[
vT 0

] [ Γ11 Γ12

Γ21 Γ22

] [
vT

0

]
> 0,

showing the positive definiteness of Γ11.
The same holds for Γ22.
In particular, Γ11 and Γ22 are invertible.



Schur Complements and Conditioning

To calculate the inverse of Γ, we solve the equation

Γx = y

in block form.
By partitioning,

x =

[
x1

x2

]
∈ Rk

∈ Rn−k , y =

[
y1

y2

]
∈ Rk

∈ Rn−k .

we have

Γ11x1 + Γ12x2 = y1,

Γ21x1 + Γ22x2 = y2.



Schur Complements and Conditioning

Eliminate x2 from the second equation,

x2 = Γ−1
22

(
y2 − Γ21x1

)
,

substitute back into the first equation:

Γ11x1 + Γ12Γ−1
22

(
y2 − Γ21x1

)
= y1,

and by rearranging the terms,(
Γ11 − Γ12Γ−1

22 Γ21

)
x1 = y1 − Γ12Γ−1

22 y2.

Define the Schur complement of Γ22:

Γ̃22 = Γ11 − Γ12Γ−1
22 Γ21



Schur Complements and Conditioning

It can be shown that Γ̃22 must be invertible, and therefore

x1 = Γ̃−1
22 y1 − Γ̃−1

22 Γ12Γ−1
22 y2.

Similarly, interchanging the roles of x1 and x2,

x2 = Γ̃−1
11 y2 − Γ̃−1

11 Γ21Γ−1
11 y1,

where
Γ̃11 = Γ22 − Γ21Γ−1

11 Γ12

is the Schur complement of Γ11.

In matrix form:[
x1

x2

]
=

[
Γ̃−1

22 −Γ̃−1
22 Γ12Γ−1

22

−Γ̃−1
11 Γ21Γ−1

11 Γ̃−1
11

][
y1

y2

]



Schur Complements and Conditioning

Conclusion:

Γ−1 =

[
Γ̃−1

22 −Γ̃−1
22 Γ12Γ−1

22

−Γ̃−1
11 Γ21Γ−1

11 Γ̃−1
11

]
=

[
B11 B12

B21 B22

]
.

Thus The conditional density πX1(x1 | x2) is a Gaussian

πX1(x1 | x2) ∼ N (x1,C),

where
x1 = −B−1

11 B12x2 = Γ12Γ−1
22 x2,

and

C = B−1
11 = Γ̃22.



Linear Inverse Problems

For simplicity, let us assume that R = 0.
Posterior density πX (x | b) is a Gaussian density, with mean

x = Γ12Γ−1
22 b = DAT

(
ADAT + C

)−1
b,

and covariance

Φ = Γ̃22 = Γ11 − Γ12Γ−1
22 Γ21 = D− DAT

(
ADAT + C

)−1
AD.



Example: Numerical differentiation

f (t) =

∫ t

0
g(τ)dτ + noise.

Discretization:

b = Ax + e,

where

A =
1

n


1
1 1
...

. . .

1 1

 .



Stochastic extension

Stochastic model
B = AX + E .

Model for noise: Independent components,

Ej ∼ N (0, σ2), 1 ≤ j ≤ n.

Probability density:

πE (e) =

(
1

2πσ2

)n/2

exp

(
− 1

2σ2
‖e‖2

)
.

Likelihood:

πB(b | x) ∝ exp

(
− 1

2σ2
‖b − Ax‖2

)
.



Autoregressive Prior Models

Discrete model,

xj = g(tj), tj =
j

n
, 0 ≤ j ≤ n,

Consider two possible prior models:

1. We know that x0 = 0, and believe that the absolute value of
the slope of g is bounded by some m1 > 0.

2. We know that x0 = xn = 0 and believe that the curvature of g
is bounded by some m2 > 0.



Autoregressive models

1. Slope:

g ′(tj) ≈
xj − xj−1

h
, h =

1

n
,

Prior information: We believe that

|xj − xj−1| ≤ hm1 with some uncertainty.

2. Curvature:

g ′(tj) ≈
xj−1 − 2xj + xj+1

h2
.

Prior information: We believe that

|xj−1 − 2xj + xj+1| ≤ h2m2 with some uncertainty.



Autoregressive model

In both cases, we assume that xj is a realization of a random
variable Xj .
Boundary conditions:

1. X0 = 0 with certainty. Probabilistic model for Xj , 1 ≤ j ≤ n.

2. X0 = Xn = 0 with certainty. Probabilistic model for Xj ,
1 ≤ j ≤ n − 1.



Autoregressive prior models

1. First order prior:

Xj = Xj−1 + γWj , Wj ∼ N (0, 1), γ = hm1.

2. Second order prior:

Xj =
1

2
(Xj−1 + Xj+1) + γWj , Wj ∼ N (0, 1), γ =

1

2
h2 m2.

STD=γ
x

j−1

x
j

STD=γx
j−1

x
j+1

x
j



Matrix form: first order model

System of equations:

X1 = X1 − X0 = γW1

X2 − X1 = γW2

...
...

Xn − Xn−1 = γWn

L1 =


1
−1 1

. . .
. . .

−1 1

 ∈ Rn×n, X =


X1

X2
...
Xn

 , W =


W1

W2
...

Wn

 .

L1X = γW , W ∼ N (0, In),



Matrix form: second order model

System of equations:

X2 − 2X1 = X2 − 2X1 + X0 = γW1

X3 − 2X2 + X1 = γW2

...
...

−2Xn−1 − Xn−2 = Xn − 2Xn−1 + Xn−2 = γWn−1

L2 =


−2 1

1 −2 1
. . .

. . .

1 −2

 ∈ R(n−1)×(n−1), X =


X1

X2
...

Xn−1

 ,

L2X = γW , W ∼ N (0, In−1),



Prior density

Given a model
LX = γW , W ∼ N (0, I),

that is,

πW (w) ∝ exp

(
−1

2
‖w‖2

)
,

we conclude that

πX (x) ∝ exp

(
− 1

2γ2
‖Lx‖2

)
= exp

(
−1

2
xT

[
1

γ2
LTL

]
x

)
.

The inverse of the covariance matrix = precision matrix is

D−1 =
1

γ2
LTL.



Testing a Prior

Question: Given a covariance D, how can we check if the prior
corresponds to our expectations?

Symmetric decomposition of the precision matrix (let γ = 1 for
simplicity):

D−1 = LTL.

We know that
W = LX ∼ N (0, I).

Sampling of X :

1. Draw a realization w ∼ N (0, In)

2. Set x = L−1w .



Random draws from priors

Generate m draws from the prior using the Matlab command
randn.

n = 100; % number of discretization intervals

t = (0:1/n:1);

m = 5; % number of draws

% First order model. Boundary condition X_0 = 0

L1 = diag(ones(1,n),0) - diag(ones(1,n-1),-1);

gamma = 1/n; % m_1 = 1

W = gamma*randn(n,m);

X = L1\W;



Plots of the random draws
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Belief envelopes

Diagonal elements of the posterior covariance:

Γjj = η2
j = posterior variance of Xj .

Posterior belief:
x j − 2ηj < Xj < x j + 2ηj

with posterior probability ≈ 95%.



Bayesian solution
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Linear Inverse Problems

An alternative (but equivalent) formula for the posterior:

Prior,

πX (x) ∝ exp

(
−1

2
xTD−1x

)
,

and likelihood,

πB(b | x) ∝ exp

(
−1

2
(b − Ax)TC−1(b − Ax)

)
.

Posterior density:

πX (x | b) ∝ πX (x)πB(b | x) ∝ exp

(
−1

2
Q(x)

)
,



Linear Inverse Problems

Quadratic term in the exponential:

Q(x) = (b − Ax)TC−1(b − Ax) + xTD−1x

Collect the terms of the same order in x together:

Q(x) = xT
(
ATC−1A + D−1

)︸ ︷︷ ︸
=M

x − 2xTATC−1b + bTC−1b.

Complete the square:

Q(x) = (xT −M−1ATC−1b)TM(xT −M−1ATC−1b) + . . .



Linear Inverse Problems

Conclusion: The posterior mean and covariance have alternative
expressions,

x =
(
ATC−1A + D−1

)−1
ATC−1b

and

Φ =
(
ATC−1A + D−1

)−1
.

The formula for x is also known as Wiener filtered solution.



Tikhonov Regularization Revisited

Consider the linear model

b = Ax + e, e ∼ N (0,C).

Likelihood:

πB(b | x) ∝ exp

(
−1

2
(b − Ax)TC−1(b − Ax)

)
.

Assume a Gaussian prior:

X ∼ N (0,D),

or, in terms of densities,

πX (x) ∝ exp

(
−1

2
xTD−1x

)
.



Tikhonov Regularization Revisited

Bayes’ formula:

pX (x | b) ∝ pX (x)pB(b | x)

= exp

(
−1

2
xTD−1x − 1

2
(b − Ax)TC−1(b − Ax)

)
.

By writing D−1 = LTL, the negative of the exponent is

H(x) =
1

2

(
‖b − Ax‖2

C + ‖Lx‖2
)
,

a Tikhonov functional.



Tikhonov Regularization Revisited

Therefore,

xMAP = argmax
{
πX (x | b)

}
= argmin

{
‖b − Ax‖2

C + ‖Lx‖2
}
.

The Tikhonov regularization parameter is absorbed in the prior
covariance matrix as well as the noise covariance matrix.



Non-Gaussian models

The Gaussian models are insufficient when

I the forward model is non-linear,

I the prior is non-Gaussian,

I the noise is non-additive,

I the noise is non-Gaussian.



Monte Carlo Integration

Assume that a probability density πX is given in Rn.
Problem: Estimate numerically an integral of type

E
{
f (X )

}
=

∫
Rn

f (x)πX (x)dx =?

I Expectation of X : f (x) = x .

I Covariance of X : f (x) = (x − x)(x − x)T.



Monte Carlo Integration

Difficulties with numerical integration using quadrature methods:

I We may not know the support of µX (Support: The set in
which the function is not vanishing). Where should we put
our quadrature points?

I If n is large, an integration grid becomes huge: K
points/direction means Kn grid points.

Try Monte Carlo integration!



Monte Carlo Integration

Example: Given a two-dimensional set Ω ⊂ R2. Estimate the area
of Ω.
Raindrop integration: Assume that Ω ⊂ Q = [0, a]× [0, b].
Draw points from uniform density over Q:{

x1, x2, . . . , xN
}
, x j ∼ Uniform(Q).

Estimate of the area |Ω|:

|Ω|
|Q|

=
|Ω|
ab
≈ # of points x j ∈ Ω

N
,

solve for |Ω|.



Monte Carlo Integration

The approximation corresponds to Monte Carlo integral

|Ω|
|Q|

=
1

|Q|

∫
Q
χΩ(x)dx ≈ 1

N

N∑
j=1

χΩ(x j),

where

χΩ(x) =

{
1 if x ∈ Ω
0 ifx /∈ Ω

and 1/N is the equal weight that every point x j has.

1

|Q|
χQ(x) = uniform density over Q



Monte Carlo Integration

Generalize: Given a probability density πX , write∫
Rn

f (x)πX (x)dx ≈ 1

N

N∑
j=1

f (x j),

where {
x1, x2, . . . , xN

}
is drawn independently from the probability distribution πX .

Problem: How does one draw from a probability density in Rn?



Sampling and Markov chains: Random walk

Random walk is a process of moving around by taking random
steps.
Most elementary random walk:

1. Start at a point of your choice x0 ∈ Rn.

2. Draw a random vector w1 ∼ N (0, I ) and set x1 = x0 + σw1.

3. Repeat the process: Set xk+1 = xk + σwk+1, wk+1 ∼ N (0, I ).



Sampling and Markov chains: Random walk

In terms of random variables:

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, In).

The conditional density of Xk+1, given Xk = xk is

π(xk+1 | xk) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
‖xk − xk+1‖2

)
= qk(xk , xk+1).

The function qk is called the kth transition kernel.



Sampling and Markov chains: Random walk

I Since
q0 = q1 = q2 = . . . ,

i.e., the step is always equally distributed, we call the random
walk time invariant. (k = time).

I The chain {
Xk , k = 0, 1, · · · }

of random variables, is called discrete time stochastic process.

I Particular feature: the probability distribution Xk depends of
the past only through the previous member Xk−1:

π(xk+1 | x0, x1, . . . , xk) = π(xk+1 | xk).

A stochastic process having this property is called a Markov
chain.



Sampling and Markov chains: Random walk

Given:

I an arbitrary transition kernel q,

I a random variable X with probability density πX (x) = p(x),

generate a new random variable Y by using the kernel q(x , y), that
is,

π(y | x) = q(x , y).

Question: What is the probability density of this new variable?
The answer is found by marginalization,

πY (y) =

∫
π(y | x)πX (x)dx =

∫
q(x , y)p(x)dx .



Sampling and Markov chains: Random walk

If the probability density of the new variable is equal to the one of
the old one, that is, ∫

q(x , y)p(x)dx = p(y),

p is called an invariant density of the transition kernel q.
The classical problem in the theory of Markov chains is:
Given a transition kernel, find the corresponding invariant
density.



Invariant density and sampling

Recall the sampling problem:

Given a probability density p = p(x), generate a sample that is
distributed according to it.

If we had a transition kernel q with invariant density p, generating
such sample from p(x) would be easy:

I Start with some x0;

I draw x1 from q(x0, x1);

I In general, given xk , draw xk+1 from q(xk , xk+1).

Rephrasing the sampling problem:
Given a probability density p, find a kernel q such that p is its
invariant density.



Metropolis–Hastings algorithm

Given a transition density

y 7→ K (x , y), x ∈ Rn current point,

consider a Markov process: if x ∈ Rn is the current point, we have
two possibilities:

1. Stay at x with probability r(x), 0 ≤ r(x) < 1,

2. Move by using a transition kernel K (x , y).



Let x and y be realizations of random variables X , Y .

πX (x) = p(x),

and y is generated according to the algorithm above.
Question: What is the probability density of Y ?



Let

I A be the event that we opt for moving from x ,

I ¬A be the event of staying put.

The probability of Y ∈ B ⊂ Rn assuming a move is

P
{
Y ∈ B | X = x ,A

}
=

∫
B
K (x , y)dy .

The kernel K is scaled so that

P
{
X = x ,A

}
= P

{
Y ∈ Rn | X = x ,A

}
=

∫
Rn

K (x , y)dy = 1− r(x). (4)



On the other hand, if we stay put, Y ∈ B happens only if X ∈ B,

P
{
Y ∈ B | X = x ,¬A

}
= r(x)χB(x) =

{
r(x), if x ∈ B,
0, if x /∈ B

,

where χB is the characteristic function of B.



Hence, the total probability of arriving from x to B is

P
{
Y ∈ B | X = x

}
= P

{
Y ∈ B | X = x ,A

}
+ P

{
Y ∈ B | X = x ,¬A

}
=

∫
B
K (x , y)dy + r(x)χB(x).



Marginalize over x and calculate the probability of Y ∈ B

P
{
Y ∈ B

}
=

∫
P
{
Y ∈ B | X = x

}
p(x)dx

=

∫
p(x)

(∫
B
K (x , y)dy

)
dx +

∫
χB(x)r(x)p(x)dx

=

∫
B

(∫
p(x)K (x , y)dx

)
dy +

∫
B
r(x)p(x)dx

=

∫
B

(∫
p(x)K (x , y)dx + r(y)p(y)

)
dy .



Since

P
{
Y ∈ B

}
=

∫
B
π(y)dy ,

we must have

πY (y) =

∫
p(x)K (x , y)dx + r(y)p(y).

Our goal is then to find a kernel K such that πY (y) = p(y), that is

p(y) =

∫
p(x)K (x , y)dx + r(y)p(y),

or, equivalently,

(1− r(y))p(y) =

∫
p(x)K (x , y)dx .



Substituting (4) in this formula, with the roles of x and y
interchanged, we obtain∫

p(y)K (y , x)dx =

∫
p(x)K (x , y)dx

This equation is called the balance equation. This holds, in
particular, if the integrands are equal,

p(y)K (y , x) = p(x)K (x , y).

The latter equation is known as detailed balance equation.



Metropolis-Hastings algorithm

I Start by a selecting a proposal distribution, or candidate
generating kernel q(x , y);

I The kernel should be chosen so that generating a Markov
chain with it is easy.

I A Gaussian kernel is a popular choice.



Metropolis-Hastings algorithm

If q satisfies the detailed balance equation, i.e.,

p(y)q(y , x) = p(x)q(x , y),

we are done, since p is an invariant density. More likely, the
equality does not hold.
If

p(y)q(y , x) < p(x)q(x , y). (5)

force the detailed balance equation to hold, defining K as

K (x , y) = α(x , y)q(x , y),

where α is chosen so that

p(y)α(y , x)q(y , x) = p(x)α(x , y)q(x , y).



Metropolis-Hastings algorithm

The kernel α need not be symmetric, so let

α(y , x) = 1.

Now the other factor is uniquely determined. We must have

α(x , y) =
p(y)q(y , x)

p(x)q(x , y)
< 1.

Observe that if the inequality (5) goes the other way, interchange
the roles of x and y , and let α(x , y) = 1. In summary

K (x , y) = α(x , y)q(x , y), α(x , y) = min

{
1,

p(y)q(y , x)

p(x)q(x , y)

}
.



Metropolis-Hastings algorithm

Draws in two phases:

1. Given x , draw y using the transition kernel q(x , y).

2. Calculate the acceptance ratio,

α(x , y) =
p(y)q(y , x)

p(x)q(x , y)
.

3. Flip the α–coin: draw t ∼ Uniform([0, 1]); if α > t, accept y ,
otherwise stay where you are.



Metropolis-Hastings algorithm: Random walk proposal

If q(x , y) = q(y , x), the algorithm simplifies:

1. Given x , draw y using the transition kernel q(x , y).

2. Calculate the acceptance ratio,

α(x , y) =
p(y)

p(x)
.

3. Flip the α–coin: draw t ∼ Uniform([0, 1]); if α > t, accept y ,
otherwise stay where you are.



Random walk Metropolis-Hastings

1. Set sample size N. Pick initial point x1. Set k = 1.

2. Propose a new point,

y = xk + δw , w ∼ N (0, I).

3. Compute the acceptance ratio,

α =
π(y)

π(xk)
.

4. Flip α-coin: Draw ξ ∼ Uniform([0, 1]),

4.1 If α ≥ ξ, accept: xk+1 = y ,
4.2 If α < ξ, stay put: xk+1 = xk .

5. If k < N, increase k → k + 1 and continue from 2., else stop.



Two steps

Build the program in two steps:

1. Random walk sampling, no rejections

2. Add the rejection step



Sampling, no rejections

nsample = 10000; % Sample size

x = [0;0]; % Initial point

step = 0.1; % Step size of the random walk

Sample = NaN(2,nsample); % For memory allocation

Sample(:,1) = x;

for j = 2:N

y = x + step*randn(2,1);

% Accept unconditionally

x = y;

Sample(:,j) = x;

end



Add the α-coin

Write the condition
π(y)

π(x)
> t

in logarithmic form:

log π(y)− log π(x) > log t,



x = [0;0]; % Initial point

step = 0.1; % Step size of the random walk

Sample = NaN(2,nsample); % For memory allocation

Sample(:,1) = x;

logpx = ...

for j = 2:N

y = x + step*randn(2,1);

logpy = ...

t = rand;

if logpy - logpx > log(t)

% accept

x = y;

logpx = logpy;

end

Sample(:,j) = x;

end



I If a move is not accepted, the previous point has to be
repeated:

. . . , xk−1, xk , xk , xk︸ ︷︷ ︸
rejections

, xk+1, xk+2, . . .

I The acceptance rate tells the relative rate of acceptances.

I Too low acceptance rate: The chain does not move

I Too high acceptance rate: The chain is essentially a random
walk and learns nothing of the underlying distribution (cf.
raising kids).

What is a good acceptance rate?
Rule of thumb: 15%-35%.



Example: Inverse problem in chemical kinetics

Reversible single reaction pair,

A
k1


k−1

B,

Data: With known initial values, measure [A](tj), 1 ≤ j ≤ n for

tmin = t1 < t2 < · · · < tn = tmax.

The noisy observation model is

bj = [A](tj) + ej , ej = additive noise, noise level =σ.

Inverse Problem: Estimate k1 and k−1.



Forward model: Mass Balance Equations

Denote
c1(t) = [A](t), c2(t) = [B](t).

Assuming unit volume,

dc1

dt
= −k1c1 + k−1c2, c1(0) = c01

dc2

dt
= k1c1 − k−1c2, c2(0) = c02

or
dc

dt
= Kc , c =

[
c1

c2

]
,

where

K =

[
−k1 k−1

k1 −k−1

]
.



Eigenvalues of K are

λ1 = 0, λ2 = −k1 − k−1.

Time constant

τ =
1

k1 + k−1
.

Eigenvectors:

v1 =

[
1
δ

]
, v2 =

[
1
−1

]
, δ =

k1

k−1
.

Solution:
c = αv1 + βv2e

−t/τ , α, β ∈ R.



Initial conditions imply

α =
c01 + c02

1 + δ
, β =

δc01 − c02

1 + δ
.

In particular,

c1(t) = f (t; k) =
c01 + c02

1 + δ
− δc01 − c02

1 + δ
e−t/τ ,

where

k =

[
k1

k−1

]
.



Observation model: Data consists of n measurements of c1(t)
corrupted by additive noise,

bj = f (tj , k) + ej , 1 ≤ j ≤ n.

Observation errors ej mutually independent, zero mean normally
distributed,

ej ∼ N (0, σ2).



Likelihood density

Assume that the noise is Gaussian white noise:

πnoise(e) ∝ exp

(
− 1

2σ2
‖e‖2

)
.

Likelihood density is

π(b | k) ∝ exp

− 1

2σ2

n∑
j=1

(bj − f (tj , k))2

 .



Posterior density

Flat prior over an interval: We believe that

0 < k1 ≤ K1, 0 < k−1 ≤ K−1,

with some reasonable upper bounds. Write

πprior(k) ∝ χ[0,K1](k1)χ[0,K−1](k−1).

Posterior density by Bayes’ formula,

π(k | b) ∝ πprior(k)π(b | k).

Contour plots of the posterior density?



Data
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K1 = 6, K−1 = 2, five uniformly distributed measurements of c1(t)
over the interval [tmin, tmax],

tmin = 0.1 τ, tmax = 4.1 τ (left) , tmin = 5 τ, tmax = 9 τ (right)



Posterior densities

K1 = 6, K−1 = 2, five uniformly distributed measurements of c1(t)
over the interval [tmin, tmax],

tmin = 0.1 τ, tmax = 4.1 τ (left) , tmin = 5 τ, tmax = 9 τ (right)

The hair cross indicates the value used for data generation.



MCMC exploration

Generate the data: Define

t =


t1

t2
...
tn

 , b =


b1

b2
...
bn

 ,
where

bj =
c01 + c02

1 + δtrue
− δtruec01 − c02

1 + δtrue
e−t/τtrue + ej .

δtrue =
k1,true

k−1,true
, τtrue =

1

k1,true + k−1,true
.



Random walk Metropolis-Hastings

Start with the transient measurements.
White noise proposal,

kprop = k + δw , w ∼ N (0, I ).

Choose first δ = 0.1, different initial points

k0 = (1, 2) or k0 = (5, 0.1).

Acceptance rates with these values are of the order 45%.



Scatter plots
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Transient measurements, tmin = 0.1 τ , tmax = 4.1 τ



Sample histories:First component

0 2000 4000 6000 8000 10000
1

2

3

4

5

0 2000 4000 6000 8000 10000
1

2

3

4

5

6

Initial value k1 = 1 (left) and k1 = 5 (right).



Sample histories: Second component
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Initial value k2 = 2 (left) and k2 = 0.2 (right).



Burn-in: first component
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Initial value k1 = 1 (left) and k1 = 5 (right).



Burn-in: Second component
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Initial value k2 = 2 (left) and k2 = 0.2 (right).



Scatter plots: Steady state measurement
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tmin = 5 τ , tmax = 9 τ . Use the same step size as before.
Initial point (k1, k2) = (1, 2).



Sample histories, a.k.a. fuzzy worms
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Increase the step size 0.1→ 1.
Initial point (k1, k2) = (1, 2).
Acceptance remains high, about 55%



Scatter plots, steady state data
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Increase the step size 0.1→ 1.
Initial point (k1, k2) = (1, 2).
Acceptance remains high, about 55%



Fuzzy worms
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