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Bayes' Formula

Stochastic model: Two random variables X € R"”, B € R™,
where

> B is the observed quantity,
» X is the quantity of primary interest.

Goal: Find the posterior probability density,

mx(x | b) = density of X, given the observation B = b, b = bypgerved-



Bayes' Formula

Prior information: Given the prior density wx(x), encoding our
prior information — or prior belief — about the possible vaues of X.
Likelihood: Assuming that X = x, what would the forward model
predict for the value distribution of B? Encode this information in
me(b | x).

Evidence: With prior and likelihood, compute

mg(b) = /n wxg(x, b)dx = /n me(b | x)mx(x)dx.

Bayes’ formula for probability densities

me(b | x)Tx(x)

mx(x | b) = 5(0)




Linear Inverse Problems

Consider the problem of estimating x from
b=Ax+e, AecR™",
Stochastic extension: Write
B=AX+E,
and assume the noise and prior model
X ~N(0,D), E ~ N(0,Q).
Usually it is assumed that X and E are independent. In particular,

E{XET} =E{X}E{E}" =0.



Linear Inverse Problems

However, this is not necessary, and we may have
E{XET} =ReR™™.
Define a new random variable

_ X n+m
2-[X]errm

Covariance matrix of Z:

X

T _
ZZ—[B

[1xm 87

XXT XBT
BXT BBT

Compute the expectation of this matrix.



Linear Inverse Problems

Expectations:
E{XXT} =D,

E{XBT} = E{X(AX+E)"} =E{XXTAT+XET}
= E{XXT}AT +E{XET} = DAT +R.
Furthermore,

E{BXT} =E{XBT}" = AD +R",



Linear Inverse Problems

and, finally,
E{BBT} = E{(AX+E)AX+E)"}
= E{AXXTAT + EXTAT + AXET + EET}
= ADAT +RTAT + AR+ C.

Conclusion:

T
COV(Z) D DA' +R :| _ |: M1

~ | AD+RT ADAT +RTAT £ AR+ C M1

Mo
2o

|



Schur Complements and Conditioning

Given a Gaussian random variable

_ X n+m
Z_{B]ER

with covariance I € R(m+mMx(m+n) "what is the probability density
of X, given B = b?




Schur Complements and Conditioning

Assume that X ~ N(0,T), where I € R™" is a given SPD matrix.
Partitioning of X,

o X1 ERk
X_|:X2:| eRk "

Question: Assume that Xo> = x» is observed. What is the
conditional probability density of Xi,

Tx (x| x2) =7



Schur Complements and Conditioning

Write
7TX(X) = 7TX17X2(X17 X2)'

Bayes' formula: The distribution of unknown part x; provided that
x> is known, is

X, (X1 | X2) X Tx; % (X1, X2), X2 = X2 observed-

In terms of the Gaussian density,

1 1+
7TX17X2(X1,X2) X exp <—2XTr 1X> . (]_)



Schur Complements and Conditioning

Partitioning of the covariance matrix:

N1 o ] axn
r— e RN
[ M1 T2

where
r]_l e kak7 r22 6 R(n—k)x(n—k)’

and
Mo =), € RF<(=K),

k < n,



Schur Complements and Conditioning

Precision matrix B = 1.
Partition B:

Bi:1 B } nxn
B = e RN,
[ Ba: Ba

Quadratic form x"Bx appearing in the exponential:

Bi1 B2 B11x1 + Biaxo

o= o om0 =] |
| Bai Ba x2 | | Baxi +Bxxe |’



Schur Complements and Conditioning

Biix Biox:
T T T 11X1 + B12X2
x Bx = X X

[ ! ]|:821X1+822X2:|

= Xir(Bllxl + B12X2) + X2T(821X1 + 822X2)
= XirBllxl + 2X1TBlQX2 + X;—BQQXQ

_ T B
= (Xl + BlllBl2X2) Bi1 (Xl + BlllBl2x2)

+ %, (Baz — B21Bi'B12)x2 -

independent of x;



Schur Complements and Conditioning
From this key equation for conditional densities it follows that

1 _ _
x, (X1 | x2) o< exp (-2(X1 + BlllBlzxz)TBn(X1 + 5111512X2)> .

Thus the conditional density is Gaussian, with mean

1
X1 = —Bi7 Bioxo,

and covariance matrix

C =B

Question: How to express these formulas in terms of ['?



Schur Complements and Conditioning

Consider a partitioned SPD matrix ' € R"™*",
For any v € RK, x # 0

M T T
v = [T o}[r; rZHVo ]>o,

showing the positive definiteness of [13.
The same holds for 5.
In particular, 11 and 55 are invertible.



Schur Complements and Conditioning

To calculate the inverse of ', we solve the equation

x=y
in block form.
By partitioning,
[ € Rk [ n] eRrk
- X5 c Rnfk 9 - Vo c Rnfk .
we have
Mixi +Txe = yi,

Mo1x1 +Tox2 = yo.



Schur Complements and Conditioning

Eliminate x» from the second equation,
x2 =55 (y2 — To1x1),
substitute back into the first equation:
_1 o

Fixa + T2l 5y (y2 — To1xa) = w4,

and by rearranging the terms,
-1 _ -1
(T11 = T12l 55 To1)x1 = y1 — T12l 55 yo.

Define the Schur complement of T 5:

T =T — M12l5y o1



Schur Complements and Conditioning
It can be shown that Fzz must be invertible, and therefore
x1 =T yi — Toa 12l 5a v
Similarly, interchanging the roles of x; and x»,
xo=Titye =TTl in,

where _
M1 =T — Tl 12

is the Schur complement of 13.

In matrix form:

[ X1 ] _ N F2_21 _FQ_Qir12r2_21 [ yi ]
X2 SETAESLET o Y2



Schur Complements and Conditioning

Conclusion:

r—l _ F;zl —nglvrurz}l ] _ [ Bll 812 :|

T Tt M B2a1 B2

Thus The conditional density mx,(x1 | x2) is a Gaussian
T (x1 | x2) ~ N (x1,C),

where

1 1
X1 = —Bi7B1oxo = 12l 55 X0,

and

C= Bﬂl = Fzz.




Linear Inverse Problems

For simplicity, let us assume that R = 0.
Posterior density mx(x | b) is a Gaussian density, with mean

X = [1oM5b = DAT(ADAT + C) b,

and covariance

® =Ty = M1y — M12M53 M1 = D — DAT(ADAT 4 C) AD.




Example: Numerical differentiation

f(t) = /Otg(T)dT + noise.

Discretization:

where



Stochastic extension

Stochastic model
B=AX+E.

Model for noise: Independent components,
Ei~N(0,6%), 1<j<n.

Probability density:

1 n/2 1 )
me(e) = (271_02) exp (—MHeH ) .

Likelihood:

1
wg(b | x) o< exp <—M\\b - Ax||2> .



Autoregressive Prior Models

Discrete model,

J .
Xj:g(tj)a tj:;7 OSJSH,

Consider two possible prior models:

1. We know that xg = 0, and believe that the absolute value of
the slope of g is bounded by some m; > 0.

2. We know that xp = x, = 0 and believe that the curvature of g
is bounded by some my > 0.



Autoregressive models

1. Slope:
X; — Xj_
g'(y) ~ T— =
Prior information: We believe that

|xi — xj—1] < hmy with some uncertainty.

2. Curvature: ox: +
Xj—1 — &X| Xj4+1
gl ~ ST

Prior information: We believe that

IXj—1 — 2xj + xj+1| < h2m2 with some uncertainty.



Autoregressive model

In both cases, we assume that x; is a realization of a random
variable X;.
Boundary conditions:

1. Xo = 0 with certainty. Probabilistic model for X, 1<j<n.

2. Xo = X, = 0 with certainty. Probabilistic model for X;,
1<j<n-1.



Autoregressive prior models

1. First order prior:
)<J:)<J—1+FYVV17 VVJNN(Ov]-)7 ’Y:hml

2. Second order prior:

1 1
)<j = 5()971 + )<j+1) + ’YVVJ" VVJ ~ N(07 1)7 Y= §h2 ma.




Matrix form: first order model
System of equations:

X1=X1—Xo = YW
Xo—X1 = W,

Xnp—Xn1 = ’)’Wn

1 X1

-1 1 Xo

L1 = - RnX", = .
-1 1 Xn

|_1X :’}/W, WNN(Oaln)7



Matrix form: second order model
System of equations:

Xo —=2X1=Xo —=2X1+Xog = ’7W1
X3 —=2Xo+ X1 = W,

—2Xn1 = Xn2=Xp = 2Xy 1+ Xy = YW,

—2 1 X1
L2 = 1 -2 1 c R(”*l)x(”*l)’ X = )$2
1 -2 Xn—l

LoX =W, W ~ N(0,1,_1),



Prior density

Given a model
LX =yW, W ~ N(0,1),

that is,

1
T (w) ox exp (—2||w|r2) |

we conclude that

1 1 1
mx(x) o exp <_2’Y2“—X”2> = exp <—2XT [%LTL] x) .

The inverse of the covariance matrix = precision matrix is

1
D'=SLTL
v



Testing a Prior

Question: Given a covariance D, how can we check if the prior
corresponds to our expectations?

Symmetric decomposition of the precision matrix (let v =1 for
simplicity):
D'=L"L

We know that
W =LX ~ N(0, ).

Sampling of X:

1. Draw a realization w ~ N(0,1,,)
2. Set x = L7 w.



Random draws from priors

Generate m draws from the prior using the Matlab command

randn.

n = 100; % number of discretization intervals
t = (0:1/n:1);

m = 5; % number of draws

% First order model. Boundary condition X_0 = 0

L1 diag(ones(1,n),0) - diag(ones(l,n-1),-1);
gamma = 1/n; % m_1 =1

W = gamma*randn(n,m) ;

L1\W;

>
]



Plots of the random draws
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Belief envelopes

Diagonal elements of the posterior covariance:
.2 ; ; .
[jj = n; = posterior variance of X;.

Posterior belief:
Yj-277j<Xj<?j+277j

with posterior probability ~ 95%.



Bayesian solution
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Linear Inverse Problems

An alternative (but equivalent) formula for the posterior:
Prior,
1
mx(x) ox exp <2XTD_1X> ,
and likelihood,

me(b | x) o exp <—;(b —Ax)TC (b - Ax)) .

Posterior density:

x(x | B) o mx (x)ma(b | x) o exp <—;Q(X)> ,



Linear Inverse Problems

Quadratic term in the exponential:
Q(x) = (b—Ax)TC (b —Ax) 4+ x"D1x
Collect the terms of the same order in x together:

Q(x)=x" (ATC'A+ D) x —2xTATC b+ bTC b

=M

Complete the square:

Q(x) = (x" = MIATCH) TM(xT — MTATC 1) + ...



Linear Inverse Problems

Conclusion: The posterior mean and covariance have alternative
expressions,

x=(ATC'A+D 1) 'ATC b

and

¢ = (ATC'A+ D)7

The formula for X is also known as Wiener filtered solution.



Tikhonov Regularization Revisited

Consider the linear model
b=Ax+e, e~ N(0,C).

Likelihood:
AT b —

me(b | x) o exp 2(b Ax)'CH(b—Ax) ).

Assume a Gaussian prior:

X ~ N(0,D),

or, in terms of densities,

1
mx(x) x exp <—2XTD_1X> :



Tikhonov Regularization Revisited

Bayes' formula:

px(x | b) x px(x)pa(b | x)

= exp (—;XTD_IX - %(b —Ax)TC (b - Ax)) .

By writing D™ = LTL, the negative of the exponent is

H(x) = 5 (Ib = Ax|[g + [ILx]?) ,

N =

a Tikhonov functional.



Tikhonov Regularization Revisited

Therefore,
xyap = argmax{mx(x | b)} = argmin{||b — Ax||Z + ”LXH2}.

The Tikhonov regularization parameter is absorbed in the prior
covariance matrix as well as the noise covariance matrix.



Non-Gaussian models

The Gaussian models are insufficient when
» the forward model is non-linear,
» the prior is non-Gaussian,
» the noise is non-additive,

» the noise is non-Gaussian.



Monte Carlo Integration

Assume that a probability density mx is given in R”.
Problem: Estimate numerically an integral of type

E{F(X)} = /R ) () =7

» Expectation of X: f(x) = x.

» Covariance of X: f(x) = (x = X)(x — %)T.



Monte Carlo Integration

Difficulties with numerical integration using quadrature methods:

» We may not know the support of ux (Support: The set in
which the function is not vanishing). Where should we put
our quadrature points?

> If nis large, an integration grid becomes huge: K
points/direction means K" grid points.

Try Monte Carlo integration!



Monte Carlo Integration

Example: Given a two-dimensional set Q C R?. Estimate the area
of Q.

Raindrop integration: Assume that Q C Q = [0, a] x [0, b].

Draw points from uniform density over Q:

{xl,x27 . ,XN}, x) ~ Uniform(Q).
Estimate of the area |Q|:

12 _ |2 _ # of points x e Q

Q| — ab N ’

solve for |Q|.



Monte Carlo Integration

The approximation corresponds to Monte Carlo integral

LI SRS

where
1 ifxeQ

xa(x) :{ 0 ifx¢Q

and 1/N is the equal weight that every point x/ has.

1
@XQ(X) = uniform density over @



Monte Carlo Integration

Generalize: Given a probability density mx, write

1,
f(x)mx(x)dx ~ m Z f(x'),

R? =

where
{xl,x2,...,xN}

is drawn independently from the probability distribution mx.

Problem: How does one draw from a probability density in R"?



Sampling and Markov chains: Random walk

Random walk is a process of moving around by taking random
steps.
Most elementary random walk:

1. Start at a point of your choice xg € R".

2. Draw a random vector wy ~ N(0,/) and set x; = xo + ow;.

3. Repeat the process: Set xxy1 = xx + owiy1, wkr1 ~ N(0,1).



Sampling and Markov chains: Random walk

In terms of random variables:

Xiy1 = X + oWir1,  Wigr ~ N(0, ).

The conditional density of X411, given Xix = xi is

1 1 R
T(Xkr1 | Xk) = (2ro2y2 P ~ 52 Ik = Xernll” ) = ailxe xer1)-

The function gy is called the kth transition kernel.



Sampling and Markov chains: Random walk

» Since
o=q1=q=...,
i.e., the step is always equally distributed, we call the random
walk time invariant. (k = time).
» The chain
{Xq, k=0,1,---}
of random variables, is called discrete time stochastic process.

» Particular feature: the probability distribution Xy depends of
the past only through the previous member Xy _1:

T(Xk1 | X0, X1y - -y Xk) = T(Xkt1 | Xk)-

A stochastic process having this property is called a Markov
chain.



Sampling and Markov chains: Random walk

Given:
» an arbitrary transition kernel g,

» a random variable X with probability density mx(x) = p(x),

generate a new random variable Y by using the kernel g(x, y), that
is,

m(y | x) = q(x,y).

Question: What is the probability density of this new variable?
The answer is found by marginalization,

wv(y) = [ 7y | 9mxtldx = [ alxyp(ads



Sampling and Markov chains: Random walk

If the probability density of the new variable is equal to the one of
the old one, that is,

/ a(x, y)p(x)dx = p(y),

p is called an invariant density of the transition kernel q.

The classical problem in the theory of Markov chains is:

Given a transition kernel, find the corresponding invariant
density.



Invariant density and sampling

Recall the sampling problem:

Given a probability density p = p(x), generate a sample that is
distributed according to it.

If we had a transition kernel g with invariant density p, generating
such sample from p(x) would be easy:

» Start with some xg;

» draw x; from g(xo, x1);

> In general, given xx, draw xixt1 from q(xk, Xk+1)-
Rephrasing the sampling problem:

Given a probability density p, find a kernel q such that p is its
invariant density.



Metropolis—Hastings algorithm

Given a transition density
y— K(x,y), x¢&R" current point,

consider a Markov process: if x € R” is the current point, we have
two possibilities:

1. Stay at x with probability r(x), 0 < r(x) < 1,

2. Move by using a transition kernel K(x,y).



Let x and y be realizations of random variables X, Y.

mx(x) = p(x),

and y is generated according to the algorithm above.
Question: What is the probability density of Y?



Let

» A be the event that we opt for moving from x,
» —A be the event of staying put.

The probability of Y € B C R”" assuming a move is

P{YE B|X:X,A} :/BK(X,y)dy.

The kernel K is scaled so that

P{X=x,A} = P{Y€ER"|X=xA}

/n K(x,y)dy =1 — r(x).



On the other hand, if we stay put, Y € B happens only if X € B,

P{YGB]X:x,ﬁ.A}ZI’(X)XB(X):{ (r)fx)’ :ii;g’ ’

where x g is the characteristic function of B.



Hence, the total probability of arriving from x to B is

P{YeB|X=x}
=P{YeB|X=x,A} +P{Y e B| X =x,-A}

:/BK(x,y)derr(X)XB(X)-



Marginalize over x and calculate the probability of Y € B

P{Y e B} = /P{YE B | X = x}p(x)dx

= [ o ([ Kteriay) o+ [ xalortpts
_ /B < / p()K(x, y)dx) dy + /B r(x)p(x)dx

= [ (] pbortxnax o) o



Since

P{Y € B} = /Bw(y)dy,

we must have
ry(y) = / p()K(x, y)dx + r(y)p(y).

Our goal is then to find a kernel K such that my(y) = p(y), that is

p(y) = / p()K(x, y)dx + r(y)p(y),

or, equivalently,

(1— r(y))ply) = / p(x)K (x, y)dx.



Substituting (4) in this formula, with the roles of x and y
interchanged, we obtain

[ KX = [ (K)o

This equation is called the balance equation. This holds, in
particular, if the integrands are equal,

p(y)K(y,x) = p(x)K(x,y).

The latter equation is known as detailed balance equation.



Metropolis-Hastings algorithm

» Start by a selecting a proposal distribution, or candidate
generating kernel q(x,y);

> The kernel should be chosen so that generating a Markov
chain with it is easy.

» A Gaussian kernel is a popular choice.



Metropolis-Hastings algorithm

If g satisfies the detailed balance equation, i.e.,

p(y)aly,x) = p(x)a(x,y),

we are done, since p is an invariant density. More likely, the
equality does not hold.
If

p(y)aly,x) < p(x)q(x,y). (5)

force the detailed balance equation to hold, defining K as
K(x,y) = a(x, y)a(x, y),
where « is chosen so that

p(y)aly, x)a(y, x) = p(x)a(x, y)q(x, y).



Metropolis-Hastings algorithm

The kernel o need not be symmetric, so let

aly,x) =1.
Now the other factor is uniquely determined. We must have

p(y)a(y,x)

p()atay) <"

a(va) =

Observe that if the inequality (5) goes the other way, interchange
the roles of x and y, and let a(x,y) = 1. In summary

p(y)aly,x) } ‘

K(x,y) = a(x,y)q(x,y), a(x,y)=min {1’ p(x)q(x,y)



Metropolis-Hastings algorithm

Draws in two phases:

1. Given x, draw y using the transition kernel g(x, y).

2. Calculate the acceptance ratio,

p(y)q(y, x)

)= aley)

3. Flip the a—coin: draw t ~ Uniform([0, 1]); if o > t, accept y,
otherwise stay where you are.



Metropolis-Hastings algorithm: Random walk proposal

If g(x,y) = q(y, x), the algorithm simplifies:

1. Given x, draw y using the transition kernel g(x, y).

2. Calculate the acceptance ratio,

ply)

alx,y) = o(x

\_/\_/

3. Flip the a—coin: draw t ~ Uniform([0, 1]); if & > t, accept y,
otherwise stay where you are.



Random walk Metropolis-Hastings

1. Set sample size N. Pick initial point x!. Set k = 1.

2. Propose a new point,
y=x+ow, w~N(O,I.

3. Compute the acceptance ratio,

4. Flip a-coin: Draw ¢ ~ Uniform(]0, 1]),

41 If o> €, accept: xkt1 =y,
4.2 If a < &, stay put: xkt1 = xk,

5. If k < N, increase k — k + 1 and continue from 2., else stop.



Two steps

Build the program in two steps:
1. Random walk sampling, no rejections
2. Add the rejection step



Sampling, no rejections

nsample = 10000; % Sample size
x = [0;0]; % Initial point
step =0.1; % Step size of the random walk
Sample = NaN(2,nsample); % For memory allocation
Sample(:,1) = x;
for j = 2:N

y = x + step*randn(2,1);

% Accept unconditionally
X =Y;
Sample(:,j) = x;

end



Add the a-coin

Write the condition

()

in logarithmic form:

log7(y) — log m(x) > log t,



X
step
Samp
Samp

logp

for

end

[0;0]; % Initial point

=0.1; % Step size of the random walk
le = NaN(2,nsample) ; % For memory allocation
le(:,1) = x;
X=
j = 2:N
y = X + stepx*randn(2,1);
logpy =
t = rand;

if logpy - logpx > log(t)
% accept
X =Y;
logpx = logpy;

end

Sample(:,j) = x;



» If a move is not accepted, the previous point has to be
repeated:

k=1 _k _k _k _k+1 _k+2
XTI XX X X T XA
~——

rejections

» The acceptance rate tells the relative rate of acceptances.
» Too low acceptance rate: The chain does not move

» Too high acceptance rate: The chain is essentially a random
walk and learns nothing of the underlying distribution (cf.
raising kids).

What is a good acceptance rate?
Rule of thumb: 15%-35%.



Example: Inverse problem in chemical kinetics

Reversible single reaction pair,

ki
A =B,
k1

Data: With known initial values, measure [A](t;), 1 < j < n for
tin = 01 < b < -+ < th = tmax-
The noisy observation model is
bj = [A](tj) + ej, ej = additive noise, noise level =o.

Inverse Problem: Estimate k; and k_j.



Forward model: Mass Balance Equations

Denote
a(t) =[Al(t), c(t) =[B](1).

Assuming unit volume,

dc
71 = —kia+ ko1, c(0)=cn
t
% = ki — ko1, (0)=co
or y
ac _ _|a
dt_KC’ C—|:C2:|,
where



Eigenvalues of K are

Time constant

Eigenvectors:

Solution:
c=av + ﬁvze_t/T, a, B eR.



Initial conditions imply

:C01+C02
146 7

_ dco1 — cp2
b= 1+94

In particular,

co1+ o2 0Co1 — €02 _y4/r
a) =tk =5 ~ 355 ¢ "

where



Observation model: Data consists of n measurements of ¢i(t)
corrupted by additive noise,

bj:f(tj,k)+ej, 1<;<n.

Observation errors e; mutually independent, zero mean normally
distributed,
€ ~ N(O, 02).



Likelihood density

Assume that the noise is Gaussian white noise:

1
Thoise(€) X €xp (—M|e|2> .

Likelihood density is

W(bk)ocexp( 222 f(tj, k) )



Posterior density

Flat prior over an interval: We believe that
0< ki <Ky, 0<k 1<Ky,
with some reasonable upper bounds. Write
Tprior(K) < X[0,k,] (k1) X[0,k_](k=1)-
Posterior density by Bayes' formula,
(k| b) o Tprior(k)m(b | k).

Contour plots of the posterior density?



Data
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K1 =6, K_1 = 2, five uniformly distributed measurements of ¢ (t)
over the interval [tmin, tmax],

tmin = 0.1 7, tax = 4.1 7 (left) , tmin =57, tmax = 97 (right)



Posterior densities

1 2 3 4 5 5 1 2 3 4 5 6
K1 =6, K_1 = 2, five uniformly distributed measurements of ¢;(t)
over the interval [tmin, tmax),

tmin = 0.1 7, tnax = 4.17 (left) , tmin =57,  tmax = 97 (right)

The hair cross indicates the value used for data generation.



MCMC exploration

Generate the data: Define

t1 b
to by
t = . 9 b = . 9
ty bn
where 5
o1 + € co1 — Co2 _
bj _ 01 02  Otruet01 02e t/Ttrue + 6.
1 + 5true 1 + 5true
5 o kl,true - o 1
true — true — .
kfl,true’ kl,true + kfl,true



Random walk Metropolis-Hastings

Start with the transient measurements.
White noise proposal,

kprop = k + 0w, w ~ N(0,/).
Choose first § = 0.1, different initial points

ko = (1,2) or ko = (5,0.1).

Acceptance rates with these values are of the order 45%.



Scatter plots
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Sample histories:First component
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Initial value k; = 1 (left) and k; =5 (right).



Sample histories: Second component
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Burn-in: first component
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Burn-in: Second component
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Scatter plots: Steady state measurement
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tmin = 57, tmax = 97. Use the same step size as before.
Initial point (k1, k2) = (1,2).



Sample histories, a.k.a. fuzzy worms
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Increase the step size 0.1 — 1.
Initial point (k1, k2) = (1,2).
Acceptance remains high, about 55%



Scatter plots, steady state data
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Acceptance remains high, about 55%
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Fuzzy worms
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