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Typical "Forward Problem"

Kevin Flores Least squares tutorial



3/83

Typical "Inverse Problem"
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Linear vs. Nonlinear Regression
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Linear vs. Nonlinear Regression
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Least Squares Inverse Problem Formulations

The Mathematical Model We consider inverse or parameter
estimation problems in the context of a parameterized (with
vector parameter q ∈ Rκq ) n-dimensional vector dynamical
system or mathematical model

dx
dt

(t) = g(t ,x(t),q), (1)

x(t0) = x0, (2)

with observation process

f (t ;θ) = Cx(t ;θ), (3)

where θ = (qT , x̃T
0 )T ∈ Rκq+ñ = Rκθ , ñ ≤ n, and the

observation operator C maps Rn to Rm. In most of the
discussions below we assume without loss of generality that
some subset x̃0 of the initial values x0 are also unknown.
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Following usual conventions (which correspond to the form of
data usually available from experiments), we assume a discrete
form of the observations in which one has N longitudinal
observations yj corresponding to

f (tj ;θ) = Cx(tj ;θ), j = 1, . . . ,N. (4)

In general the corresponding observations or data {yj} will not
be exactly f (tj ;θ). Due to the nature of the phenomena leading
to this discrepancy, we treat this uncertainty pertaining to the
observations with a statistical model for the observation
process.
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The Statistical Model

In our discussions here we consider a statistical model of the
form

Y j = f (tj ;θ0) + hj ◦ Ẽ j , j = 1, . . . ,N, (5)

where f (tj ;θ) = Cx(tj ;θ), j = 1, . . . ,N, and C is an m × n
matrix. This corresponds to the observed part of the solution of
the mathematical model (1)-(2) at the j th covariate or
observation time for a particular vector of parameters
θ ∈ Rκq+ñ = Rκθ . Here the m-vector function hj is defined by

hj =


(1, . . . ,1)T for the vector OLS case

(w1,j , . . . ,wm,j)
T for the vector WLS case

(f γ1 (tj ;θ0), . . . , f γm(tj ;θ0))T for the vector GLS case,
(6)

for j = 1, . . . ,N, and hj ◦ Ẽ j denotes the component-wise
multiplication of the vectors hj and Ẽ j .
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The vector θ0 represents the “truth” parameter that
generates the observations {Yj}Nj=1.

The terms hj ◦ Ẽ j are random variables which can
represent observation or measurement error, “system
fluctuations” or other phenomena that cause observations
to not fall exactly on the points f (tj ;θ0) from the smooth
path f (t ,θ0).
Since these fluctuations are unknown to the modeler, we
will assume that realizations ε̃j of Ẽ j are generated from a
probability distribution which reflects the assumptions
regarding these phenomena.
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Thus specific data (realizations) corresponding to (5) will be
represented by

y j = f (tj ;θ0) + hj ◦ ε̃j , j = 1, . . . ,N. (7)

We make standard assumptions about the Ẽ j in that they are
independent and identically distributed with mean zero and and
constant covariance matrix. This model (7) allows for a fairly
wide range of error models including the usual absolute (or
constant variance) error model, when γ = 0 (the OLS case), as
well as the relative (or constant coefficient of variation) error
model when γ = 1.
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Remaining Slides:

Discuss methodology related to estimates θ̂ for the true
value of the parameter θ0 from a set Ωθ of admissible
parameters, and the dependence of this methodology on
what is assumed about the choice of γ and the covariance
matrices of the errors Ẽ j .
We discuss a class of inverse problem methodologies that
can be used to calculate estimates θ̂ for θ0: the ordinary,
the weighted and the generalized least-squares
formulations.
We are interested in situations (as is the case in most
applications) where the error distribution is unknown to the
modeler beyond the assumptions on E(Y j) embodied in
the model and the assumptions made on Var(Ẽ j).
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Methodology: Ordinary, Weighted and Generalized
Least Squares

Scalar Ordinary Least Squares To simplify notation, we first
consider the absolute error statistical model (γ = 0) in the
scalar case. This then takes the form

Yj = f (tj ;θ0) + Ẽj , j = 1, . . . ,N, (8)

where the variance Var(Ẽj) = σ2
0 is assumed to be unknown to

the modeler. (Note also that the distribution of the error need
not be specified.) It is assumed that the observation errors are
independent across j (i.e., time), which may be a reasonable
one when the observations are taken with sufficient
intermittency or when the primary source of error is
measurement error.
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If we define

θOLS = θN
OLS(Y ) = arg min

θ∈Ωθ

N∑
j=1

[Yj − f (tj ;θ)]2, (9)

where Y = (Y1,Y2, . . . ,YN)T , then θOLS can be viewed as
minimizing the distance between the data and model where all
observations are treated as being of equal importance.
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We note that minimizing the functional in (9) corresponds to
solving for θ in

N∑
j=1

[Yj − f (tj ;θ)]∇f (tj ;θ) = 0, (10)

the so-called normal equations or estimating equations. We
point out that θOLS is a random vector (because Ẽj = Yj − f (tj ;θ)

is a random variable); hence if {yj}Nj=1 are realizations of the
random variables {Yj}Nj=1 then solving

θ̂OLS = θ̂
N
OLS = arg min

θ∈Ωθ

N∑
j=1

[yj − f (tj ;θ)]2 (11)

provides a realization for θOLS.
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Notation:

For a random vector or estimator θOLS, we will always
denote a corresponding realization or estimate with an
over hat, e.g., θ̂OLS is an estimate for θ0.
We sometimes suppress the dependence on N unless it is
specifically needed.
Finally, we drop the subscript OLS for the estimates when
it is clearly understood in context.
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Returning to (9) and (11) and noting that

σ2
0 =

1
N E

 N∑
j=1

[Yj − f (tj ;θ0)]2

 , (12)

we see that once we have solved for θ̂OLS in (11), we may
readily obtain an estimate σ̂2

OLS for σ2
0. (Recall that E denotes

the expectation operator.)
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Even though the distribution of the error random variables is not
specified, we can use asymptotic theory to approximate the
mean and covariance of the random vector θOLS [43]. As will be
explained in more detail below, as N →∞, we have that

θOLS = θN
OLS ∼ N (θ0,Σ

N
0 ) ≈ N (θ0, σ

2
0[F N

θ (θ0)T F N
θ (θ0)]−1), (13)

where the sensitivity matrix Fθ(θ) = F N
θ (θ) =

(
(F N
θ )jk (θ)

)
is

defined by

(F N
θ )jk (θ) =

∂f (tj ;θ)

∂θk
, j = 1, . . . ,N, k = 1, . . . , κθ, (14)

and
ΣN

0 ≡ σ2
0[NΩ0]−1, (15)

with
Ω0 ≡ lim

N→∞

1
N F N

θ (θ0)T F N
θ (θ0), (16)

where the limit is assumed to exist (see [9, 14, 43]).
Kevin Flores Least squares tutorial
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θOLS is approximately distributed as a multivariate normal
random variable with mean θ0 and covariance matrix ΣN

0 .
The realization (data) y = (y1, . . . , yN)T of the random
vector Y is used to estimate θ̂OLS given by (11) and the bias
adjusted approximation for σ2

0:

σ̂2
OLS =

1
N − κθ

N∑
j=1

[yj − f (tj ; θ̂OLS)]2. (17)

Both θ̂ = θ̂OLS and σ̂2 = σ̂2
OLS will then be used to

approximate the covariance matrix

ΣN
0 ≈ Σ̂N ≡ σ̂2[F N

θ (θ̂)T F N
θ (θ̂)]−1. (18)

We can obtain the standard errors SEk (θ̂OLS) (discussed in
more detail below) for the k th element of θ̂OLS by calculating

SEk (θ̂OLS) ≈
√

Σ̂N
kk .
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Remarks:

σ̂2
OLS represents the estimate for σ2

0 of (12) with the factor
1
N

replaced by the factor
1

N − κθ
.

In the linear case the estimate with
1
N

can be shown to be
biased downward (i.e., biased too low) and the same
behavior can be observed in the general nonlinear case –
see Chapter 12 of [43] and p. 28 of [27].
The subtraction of κθ degrees of freedom reflects the fact
that θ̂ has been computed to satisfy the κθ normal
equations (10).
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Vector Ordinary Least Squares

We next consider the more general case in which we have a
vector of observations for the j th covariate tj . If we still
assume the variance is constant in longitudinal data, then the
statistical model is reformulated as

Y j = f (tj ;θ0) + Ẽ j , (19)

where f (tj ;θ0)∈Rm and Ẽ j , j = 1, . . . ,N are independent and
identically distributed with zero mean and covariance matrix
given by

V0 = Var(Ẽ j) = diag(σ2
0,1, . . . , σ

2
0,m), (20)

for j = 1, . . . ,N. Here we have allowed for the possibility that
the observation coordinates Yj may have different constant
variances σ2

0,i , i.e., σ2
0,i does not necessarily have to equal σ2

0,k .
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We note that this formulation also can be used to treat the case
where V0 is used to simply scale the observations, (i.e.,
V0 = diag(v1, . . . , vm) is known). In this case the formulation is
simply a vector OLS (sometimes also called a weighted least
squares (WLS)).
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Weighted Least Squares (WLS)

In the above discussion we required that the measurement
error remain constant in variance in longitudinal data.
This assumption may not be appropriate for data sets
whose measurement error is not constant in a longitudinal
sense.
A common weighted error model, in which the error is
weighted according to some known weights, an
assumption which might be reasonable when one has data
that varies widely in the scale of observations that
experimentalists must use for the scalar observation case
is

Yj = f (tj ;θ0) + wj Ẽj . (21)

Here E(Yj) = f (tj ;θ0) and Var(Yj) = σ2
0w2

j , which derives
from the assumptions that E(Ẽj) = 0 and Var(Ẽj) = σ2

0.
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The WLS estimator is defined here by

θWLS = arg min
θ∈Ωθ

N∑
j=1

w−2
j [Yj − f (tj ;θ)]2, (22)

with corresponding estimate

θ̂WLS = arg min
θ∈Ωθ

N∑
j=1

w−2
j [yj − f (tj ;θ)]2. (23)

This special form of the WLS estimate can be thought of
minimizing the distance between the data and model while
taking into account the known but unequal quality of the
observations [27].

Kevin Flores Least squares tutorial



24/83

The WLS estimator θWLS = θN
WLS has the following asymptotic

properties [26, 27]:

θWLS ∼ N (θ0,Σ
N
0 ), (24)

where

ΣN
0 ≈ σ2

0

(
F T
θ (θ0)WFθ(θ0)

)−1
, (25)

the sensitivity matrix is given by

Fθ(θ) = F N
θ (θ) =


∂f (t1;θ)

∂θ1

∂f (t1;θ)

∂θ2
· · · ∂f (t1;θ)

∂θκθ
...

...
∂f (tN ;θ)

∂θ1

∂f (tN ;θ)

∂θ2
· · · ∂f (tN ;θ)

∂θκθ

 ,(26)

and the matrix W is defined by W−1 = diag
(

w2
1 , . . . ,w

2
N

)
.
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Note that because θ0 and σ2
0 are unknown, the estimates

θ̂ = θ̂WLS and σ̂2 = σ̂2
WLS will be used in (25) to calculate

ΣN
0 ≈ Σ̂N = σ̂2

(
F T
θ (θ̂)WFθ(θ̂)

)−1
,

where we take the approximation

σ2
0 ≈ σ̂2

WLS =
1

N − κθ

N∑
j=1

1
w2

j
[yj − f (tj ; θ̂)]2.

We can then approximate the standard errors of θWLS by taking
the square roots of the diagonal elements of Σ̂N .
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Generalized Least Squares: Definition and
Motivation

A method motivated by the WLS (as we have presented it
above) involves the so-called Generalized Least Squares (GLS)
estimator. To define the random vector θGLS [26, Chapter 3] and
[43, p. 69], the following normal equations are solved for the
estimator θGLS:

N∑
j=1

f−2γ(tj ;θGLS)[Yj − f (tj ;θGLS)]∇f (tj ;θGLS) = 0κθ , (27)

where Yj satisfies

Yj = f (tj ;θ0) + f γ(tj ;θ0)Ẽj ,

and

∇f (tj ;θ) =

(
∂f (tj ;θ)

∂θ1
, . . . ,

∂f (tj ;θ)

∂θκθ

)T

.
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The quantity θGLS is a random vector, hence if {yj}Nj=1 is a
realization of {Yj}Nj=1, then solving

N∑
j=1

f−2γ(tj ;θ)[yj − f (tj ;θ)]∇f (tj ;θ) = 0κθ (28)

for θ will provide an estimate for θGLS.
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The GLS equation (28) can be motivated by examining the
special weighted least squares estimate

θ̂WLS = arg min
θ∈Ωθ

N∑
j=1

wj [yj − f (tj ;θ)]2. (29)

for a given {wj}. If we differentiate the sum of squares in (29)
with respect to θ and then choose wj = f−2γ(tj ;θ), an estimate
θ̂GLS is obtained by solving

N∑
j=1

wj [yj − f (tj ;θ)]∇f (tj ;θ) = 0κθ

for θ , i.e., solving (28). However, we note the GLS relationship
(28) does not follow from minimizing the weighted least squares
with weights chosen as wj = f−2γ(tj ;θ) (see p. 89 of [43]).
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Another motivation for the GLS estimating equations (27) and
(28) can be found in [23]. In that text, Carroll and Ruppert claim
that if the data are distributed according to the gamma
distribution, then the maximum-likelihood estimate for θ (a
standard approach when one assumes that the distribution for
the measurement error is completely known–to be discussed
later) is the solution to

N∑
j=1

f−2(tj ;θ)[yj − f (tj ;θ)]∇f (tj ;θ) = 0κθ ,

which is equivalent to the corresponding GLS estimating
equations (28) with γ = 1. (See Chapter 3 of [12])
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The GLS estimator θGLS = θN
GLS has the following asymptotic

properties [27, 43]:

θGLS ∼ N (θ0,Σ
N
0 ), (30)

where

ΣN
0 ≈ σ2

0

(
F T
θ (θ0)W (θ0)Fθ(θ0)

)−1
, (31)

the sensitivity matrix is given by (26) and the matrix W (θ) is
defined by W−1(θ) = diag

(
f 2γ(t1;θ), . . . , f 2γ(tN ;θ)

)
.

Kevin Flores Least squares tutorial



31/83

Note that because θ0 and σ2
0 are unknown, the estimates

θ̂ = θ̂GLS and σ̂2 = σ̂2
GLS will again be used in (31) to calculate

ΣN
0 ≈ Σ̂N = σ̂2

(
F T
θ (θ̂)W (θ̂)Fθ(θ̂)

)−1
,

where we take the approximation

σ2
0 ≈ σ̂2

GLS =
1

N − κθ

N∑
j=1

1
f 2γ(tj ; θ̂)

[yj − f (tj ; θ̂)]2.

We can then approximate the standard errors of θGLS by taking
the square roots of the diagonal elements of Σ̂N .
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Computation of Σ̂N , Standard Errors, and
Confidence Intervals

We return to the case of N scalar longitudinal observations
and consider the OLS case (the extension of these ideas
to vectors is completely straight-forward).
Recall that in the ordinary least squares approach, we
seek to use a realization {yj} of the observation process

{Yj} along with the model to determine a vector θ̂
N
OLS where

θ̂
N
OLS = arg min

θ∈Ωθ

JN
OLS(θ; y) = arg min

θ∈Ωθ

N∑
j=1

[yj− f (tj ;θ)]2. (32)

Since Yj is a random variable, the corresponding estimator
θN

OLS (here we wish to emphasize the dependence on the
sample size N) is also a random vector with a distribution
called the sampling distribution.
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Remarks on sampling distribution:

Knowledge of this sampling distribution provides
uncertainty information (e.g., standard errors) for the
numerical values of θ̂

N
obtained using a specific data set

{yj}.
In particular, loosely speaking the sampling distribution
characterizes the distribution of possible values the
estimator could take on across all possible realizations with
data of size N that could be collected.
The standard errors thus approximate the extent of
variability in possible parameter values across all possible
realizations, and hence provide a measure of the extent of
uncertainty involved in estimating θ using a specific
estimator and sample size N in actual data collection.

Kevin Flores Least squares tutorial



34/83

Computation of sensitivities

The quantity Fθ is the fundamental entity in computational
aspects of this theory.
There are typically several ways to compute the matrix Fθ
(which actually is composed of the well known sensitivity
functions widely used in applied mathematics and
engineering.
First, the elements of the matrix Fθ = (Fθjk ) can always be
estimated using the forward difference

Fθjk (θ) =
∂f (tj ;θ)

∂θk
≈

f (tj ;θ + hk )− f (tj ;θ)

|hk |
,

where hk is a κθ-vector with a nonzero entry in only the k th

component which is chosen “small” and | · | is the
Euclidean norm in Rκθ .
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The choice of hk can be problematic in practice, i.e., what
does “small” mean, especially when the parameters may
vary by orders of magnitude?
In some cases the function f (tj ;θ) may be sufficiently
simple to allow one to derive analytical expressions for Fθ.
Alternatively, if the f (tj ;θ) correspond to longitudinal
observations f (tj ;θ) = Cx(tj ;θ) of solutions to a
parameterized n-vector differential equation system
ẋ = g(t ,x(t),q) as in (1)-(2), then one can use the n × κθ
matrix sensitivity equations (see [5, 7] and the
references therein)

d
dt

(
∂x
∂θ

)
=
∂g
∂x

∂x
∂θ

+
∂g
∂θ

(33)

to obtain
∂f (tj ;θ)

∂θk
= C

∂x(tj ,θ)

∂θk
.
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In order to quantify the variation in the state variable x(t) with
respect to changes in the parameters q and the initial
conditions x0, we are naturally led to consider the individual
(traditional) sensitivity functions (TSF) defined by the
derivatives

sqk (t) =
∂x
∂qk

(t) =
∂x
∂qk

(t ,θ), k = 1, . . . , κq, (34)

and
rx0l (t) =

∂x
∂x0l

(t) =
∂x
∂x0l

(t ,θ), l = 1, . . . ,n, (35)

where x0l is the l th component of the initial condition x0. If the
function g is sufficiently regular, the solution x is differentiable
with respect to qk and x0l , and therefore the sensitivity
functions sqk and rx0l are well–defined.
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Remarks on local sensitivites:

Because they are defined by partial derivatives which have
a local character, the sensitivity functions are also local in
nature.
Sensitivity and insensitivity (sqk = ∂x/∂qk not close to
zero and very close to zero, respectively) depend on the
time interval, the state values x , and the values of θ for
which they are considered.
For example, in a certain time subinterval we might find sqk

small so that the state variable x is insensitive to the
parameter qk on that particular interval.
The same function sqk can take large values on a different
subinterval, indicating to us that the state variable x is very
sensitive to the parameter qk on the latter interval.
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From the sensitivity analysis theory for dynamical systems, one
finds that s = (sq1 , . . . ,sqκq

) is an n × κq vector function that
satisfies the ODE system

ṡ(t) =
∂g
∂x

(t ,x(t ;θ),q)s(t) +
∂g
∂q

(t , x(t ;θ),q), (36)

s(t0) = 0n×κq ,

which is obtained by differentiating (1)-(2) with respect to q.
Here the dependence of s on (t ,x(t ;θ)) as well as q is readily
apparent.
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In a similar manner, the sensitivity functions with respect to the
components of the initial condition x0 define an n × n vector
function r = (rx01 , . . . , rx0n ), which satisfies

ṙ(t) =
∂g
∂x

(t ,x(t ;θ),q)r(t), (37)

r(t0) = In.

This is obtained by differentiating (1)-(2) with respect to the
initial conditions x0. The equations (36) and (37) are used in
conjunction with (i.e., usually solved simultaneously with)
equations (1)-(2) to numerically compute the sensitivities s and
r for general cases when the function g is sufficiently
complicated to prohibit a closed form solution by direct
integration. These can be succinctly written as a system for
∂x
∂θ

=

(
∂x
∂q

,
∂x
∂x0

)
given by (33).
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As we have already noted, since θ0 and σ0 are unknown, we
will use their estimates to make the approximation

ΣN
0 ≈ σ2

0[F N
θ (θ0)T F N

θ (θ0)]−1 ≈ Σ̂N(θ̂
N
OLS) = σ̂2[F N

θ (θ̂
N
OLS)T F N

θ (θ̂
N
OLS)]−1,

(38)
where the approximation σ̂2 of σ2

0, as discussed earlier, is given
by

σ2
0 ≈ σ̂2 =

1
N − κθ

N∑
j=1

[yj − f (tj ; θ̂
N
OLS)]2. (39)

Standard errors to be used in the confidence interval

calculations are given by SEk (θ̂
N

) =

√
Σ̂N

kk (θ̂
N

), k = 1,2, . . . , κθ
(see [25]).
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To compute the confidence intervals (at the 100(1− α)% level)
for the estimated parameters in our example, we define the
confidence intervals associated with the estimated parameters
so that

Prob{θN
k − t1−α/2SEk (θ̂

N
) < θ0k < θN

k + t1−α/2SEk (θ̂
N

)} = 1− α, (40)

where α ∈ [0,1] and t1−α/2 ∈ R+. For a realization y and

estimates θ̂
N

, the corresponding confidence intervals are given
by

[θ̂N
k − t1−α/2SEk (θ̂

N
), θ̂N

k + t1−α/2SEk (θ̂
N

)]. (41)

Given a small α value (e.g., α = 0.05 for 95% confidence
intervals), the critical value t1−α/2 is computed from the
student ′s t distribution tN−κθ with N − κθ degrees of freedom.
The value of t1−α/2 is determined by Prob{T ≥ t1−α/2} = α/2
where T ∼ tN−κθ .
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Remarks on asymptotic confidence intervals:

In general, a confidence interval is constructed so that, if
the confidence interval could be constructed for each
possible realization of data of size N that could have been
collected, 100(1− α)% of the intervals so constructed
would contain the true value θ0k .
Thus, a confidence interval provides further information on
the extent of uncertainty involved in estimating θ0 using the
given estimator and sample size N.
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Begin Sensitivities Interlude...

Example of how to calculate sensitivities and construct the
Fisher Information Matrix for the logistic model.
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End Sensitivities Interlude...
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Investigation of Statistical Assumptions

The form of error in the data (which of course is rarely
known) dictates which method from those discussed above
one should choose.
The OLS method is most appropriate for constant variance
observations of the form Yj = f (tj ;θ0) + Ẽj whereas the
GLS should be used for problems in which we have
nonconstant variance observations
Yj = f (tj ;θ0) + f γ(tj ;θ0)Ẽj .
We emphasize that to obtain the correct standard errors in
an inverse problem calculation, the OLS method (and
corresponding asymptotic formulas) must be used with
constant variance generated data, while the GLS method
(and corresponding asymptotic formulas) should be
applied to nonconstant variance generated data.
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An incorrect error model can lead to incorrect conclusions.
In either case, the standard error calculations are not valid
unless the correct formulas (which depend on the error
structure) are employed.
Unfortunately, it is very difficult to ascertain the structure of
the error, and hence the correct method to use, without a
priori information.
Although the error structure cannot definitively be
determined, two residual tests can be performed after the
estimation procedure has been completed to assist in
concluding whether or not the correct asymptotic statistics
were used.

Kevin Flores Least squares tutorial



47/83

Residual Plots

We will show results from simulation studies in these slides
to assist in understanding the behavior of the model in
inverse problems with different types of data with respect
to mis-specification of the statistical model.
For example, we consider a statistical model with constant
variance (CV) noise (γ = 0)

Yj = f (tj ;θ0) + Ẽj , Var(Yj) = σ2
0,

and another with nonconstant variance (NCV) noise
(γ = 1)

Yj = f (tj ;θ0)(1 + Ẽj), Var(Yj) = σ2
0 f 2(tj ;θ0).

We obtain a data set by considering a realization {yj}Nj=1 of
the random variables {Yj}Nj=1 through a realization of
{Ẽj}Nj=1, and then calculate an estimate θ̂ of θ0 using the
OLS or GLS procedure.
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Testing for a constant variance error model

We will use the residuals rj = yj − f (tj ; θ̂) to test whether
the data set is i.i.d. and possesses the assumed variance
structure.
If a data set has constant variance then

Yj = f (tj ;θ0) + Ẽj or Ẽj = Yj − f (tj ;θ0),

and hence the residuals rj are approximations to
realizations of the errors Ẽj (when it is tacitly assumed that
θ̂ ≈ θ0).
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Testing for a constant variance error model

Test 1: Since it is assumed that the errors Ẽj are i.i.d., a
plot of the residuals rj = yj − f (tj ; θ̂) vs. tj should be
random (and neither increasing nor decreasing with time).
Test 2: The error in the constant variance case does not
depend on f (tj ;θ0), and so a plot of the residuals
rj = yj − f (tj ; θ̂) vs. f (tj ; θ̂) should also be random (and
neither increasing nor decreasing).
Therefore, if the error has constant variance, then a plot of
the residuals rj = yj − f (tj ; θ̂) against tj and against f (tj ; θ̂)
should both be random.
If not, then the constant variance assumption is suspect.
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Testing for a constant variance error model

What to expect if this residual test is applied to a data set
that has nonconstant variance (NCV) generated error?
What happens if the data are incorrectly assumed to have
CV error when in fact they have NCV error?
Since in the NCV example, Rj = Yj − f (tj ;θ0) = f (tj ;θ0) Ẽj
depends upon the deterministic model f (tj ;θ0), we should
expect that a plot of the residuals rj = yj − f (tj ; θ̂) vs. tj
should exhibit some type of pattern.
Also, the residuals actually depend on f (tj ; θ̂) in the NCV
case, and so as f (tj ; θ̂) increases the variation of the
residuals rj = yj − f (tj ; θ̂) should increase as well.
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Testing for a non-constant variance error model

If a data set has nonconstant variance generated data,
then

Yj = f (tj ;θ0) + f (tj ;θ0) Ẽj or Ẽj =
Yj − f (tj ;θ0)

f (tj ;θ0)
.

Test 1: If the distributions of Ẽj are i.i.d., then a plot of the
modified residuals rm

j = (yj − f (tj ; θ̂))/f (tj ; θ̂) vs. tj should
be random for nonconstant variance generated data.
Test 2: A plot of rm

j = (yj − f (tj ; θ̂))/f (tj ; θ̂) vs. f (tj ; θ̂)
should also be random.
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Testing for a non-constant variance error model

What if the data are incorrectly assumed to have
non-constant variance error when in fact they have
constant variance error?
Since Yj − f (tj ;θ0) = Ẽj in the constant variance case, we
should expect that a plot of rm

j = (yj − f (tj ; θ̂))/f (tj ; θ̂) vs. tj
as well as that for rm

j = (yj − f (tj ; θ̂))/f (tj ; θ̂) vs. f (tj ; θ̂) will
possess some distinct pattern (such as a fan shape).

Kevin Flores Least squares tutorial



53/83

Troubleshooting residual plot analysis

There are two further issues regarding residual plots. As
we shall see by examples, some data sets might have
values that are repeated or nearly repeated a large number
of times (for example when sampling near an equilibrium of
a mathematical model or when sampling a periodic system
over many periods).
If a certain value is repeated numerous times (e.g., frepeat)
then any plot with f (tj ; θ̂) along the horizontal axis should
have a cluster of values along the vertical line x = frepeat.
This feature can easily be removed by excluding the data
points corresponding to these high frequency values (or
simply excluding the corresponding points in the residual
plots).
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Troubleshooting residual plot analysis

Another common technique when plotting against model
predictions is to plot against ln(f (tj ; θ̂)) instead of f (tj ; θ̂)
itself which has the effect of “stretching out” plots at the
ends.
Also, note that the model value f (tj ; θ̂) could possibly be
zero or very near zero, in which case the modified
residuals rm

j = (yj − f (tj ; θ̂))/f (tj ; θ̂) would be undefined or
extremely large.
To remedy this situation one might exclude values very
close to zero (in either the plots or in the data themselves).
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An Example Using Residual Plots: Logistic Growth

We illustrate residual plot techniques by exploring a widely
used model – the logistic population growth model of
Verhulst/Pearl [36]

ẋ = rx
(

1− x
K

)
, x(0) = x0. (42)

Here K is the population’s carrying capacity, r is the intrinsic
growth rate and x0 is the initial population size. This well-known
logistic model describes how populations grow when
constrained by resources or competition. The closed form
solution of this simple model is given by

x(t) =
K x0ert

K + x0 (ert − 1)
. (43)
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An Example Using Residual Plots: Logistic Growth

The left plot in Figure 1 depicts the solution of the logistic
model with K = 17.5, r = 0.7 and x0 = 0.1 for 0 ≤ t ≤ 25.
If high frequency repeated or nearly repeated values (i.e.,
near the initial value x0 or near the asymptote x = K ) are
removed from the original plot, the resulting truncated plot
is given in the right panel of the figure on the next slide
(there are no near zero values for this function).
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An Example Using Residual Plots: Logistic Growth
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Figure: Original and truncated logistic curve with K = 17.5, r = 0.7
and x0 = 0.1.
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An Example Using Residual Plots: Logistic Growth

For this example we generated both CV and NCV noisy
data (we sampled from N (0,25× 10−4) distributed
random variables to obtain realizations of Ẽj ) and obtained
estimates θ̂ of θ0 by applying either the OLS or GLS
method to a realization {yj}Nj=1 of the random variables
{Yj}Nj=1.

The initial guesses θinit = θ̂
(0)

along with estimates for
each method and error structure are given in the Tables
below.
Result: As expected, both methods do a good job of
estimating θ0, however the error structure was not always
correctly specified since incorrect asymptotic formulas
were used in some cases.
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An Example Using Residual Plots: Logistic Growth

Estimation using the OLS procedure with CV data.

θinit θ0 θ̂
CV

OLS SE(θ̂
CV

OLS) θ̂
TCV

OLS SE(θ̂
TCV

OLS )
17 17.5 1.75e+001 1.58e-003 1.74e+001 6.42e-003
.8 .7 7.00e-001 4.28e-004 7.00e-001 6.58e-004

1.2 .1 9.99e-002 3.15e-004 9.97e-002 4.39e-004
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An Example Using Residual Plots: Logistic Growth

Estimation using the GLS procedure with CV data.

θinit θ0 θ̂
CV

GLS SE(θ̂
CV

GLS) θ̂
TCV

GLS SE(θ̂
TCV

GLS )
17 17.5 1.75e+001 1.38e-004 1.75e+001 9.12e-005
.8 .7 7.00e-001 7.81e-005 7.01e-001 1.60e-005

1.2 .1 9.99e-002 6.61e-005 9.97e-002 1.21e-005
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An Example Using Residual Plots: Logistic Growth

Estimation using the OLS procedure with NCV data.

θinit θ0 θ̂
NCV

OLS SE(θ̂
NCV

OLS ) θ̂
TNCV

OLS SE(θ̂
TNCV

OLS )
17 17.5 1.75e+001 2.27e-002 1.74e+001 7.16e-002
.8 .7 7.02e-001 6.18e-003 7.09e-001 7.60e-003

1.2 .1 9.95e-002 4.51e-003 9.49e-002 4.83e-003
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An Example Using Residual Plots: Logistic Growth

Estimation using the GLS procedure with NCV data.

θinit θ0 θ̂
NCV

GLS SE(θ̂
NCV

GLS ) θ̂
TNCV

GLS SE(θ̂
TNCV

GLS )
17 17.5 1.75e+001 9.44e-005 1.74e+001 3.13e-004
.8 .7 7.02e-001 5.36e-005 7.09e-001 5.72e-005

1.2 .1 9.93e-002 4.49e-005 9.49e-002 4.12e-005
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Figure: Residual vs. time plots in tests for independence: Original
and truncated logistic curve for θ̂

CV

OLS.
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Figure: Residual vs. model plots in tests of form of variance: Original
and truncated logistic curve for θ̂
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Figure: Residual vs. model plots in tests of form of variance: Original
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Figure: Residual vs. time plots in tests for independence: Original
and truncated logistic curve for θ̂
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Figure: Modified residual vs. model plots in tests of form of variance:
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Figure: Modified residual vs. model plots in tests of form of variance:
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Bootstrapping vs. Asymptotic Error Analysis

In the above discussions we used asymptotic theory to
compute uncertainty features for parameter estimates.
One popular alternative to the asymptotic theory is
bootstrapping wherein one uses the residuals from an
initial estimation to construct a family of samples or
simulated data sets.
One then uses these samples to construct an empirical
distribution for the parameters from which the means,
standard errors and hence the associated confidence
intervals can be readily obtained for the underlying true
parameters θ0.
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Bootstrapping Algorithm: Constant Variance Data

Assume we are given experimental data (t1, y1), . . . , (tN , yN) for
a dynamical system (e.g., the logistic growth model) from an
underlying observation process

Yj = f (tj ;θ0) + Ẽj , j = 1, . . . ,N, (44)

where the Ẽj are independent and identically distributed (i.i.d.)
with mean zero (E(Ej) = 0) and constant variance σ2

0, and θ0 is
the “true value” hypothesized to exist in statistical treatments of
data. Associated corresponding realizations {yj} of the random
variables {Yj} are given by

yj = f (tj ;θ0) + ε̃j .

The following algorithm [23, 24, 26, p. 285–287] can be used to
compute the bootstrapping estimate θ̂BOOT of θ0 and its
empirical distribution.
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1 First estimate θ̂
0

from the entire sample {yj}Nj=1 using OLS.
2 Using this estimate define the standardized residuals

r̄j =

√
N

N − κθ

(
yj − f (tj ; θ̂

0
)
)

for j = 1, . . . ,N. Set m = 0.
3 Create a bootstrapping sample of size N using random

sampling with replacement from the data (realizations)
{r̄1,. . . ,r̄N } to form a bootstrapping sample {rm

1 , . . . , r
m
N }.

4 Create bootstrap sample points

ym
j = f (tj ; θ̂

0
) + rm

j ,

where j = 1,. . . ,N.
5 Obtain a new estimate θ̂

m+1
from the bootstrapping

sample {ym
j } using OLS.

6 Set m = m + 1 and repeat steps 3–5 until m ≥ M (e.g.,
typically M = 1000 as in our calculations below).
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Bootstrapping Algorithm: Constant Variance Data

We then calculate the mean, standard error, and confidence
intervals using the formulae

θ̂BOOT =
1
M

M∑
m=1

θ̂
m
,

Var(θBOOT) =
1

M − 1

M∑
m=1

(θ̂
m − θ̂BOOT)T (θ̂

m − θ̂BOOT), (45)

SEk (θ̂BOOT) =
√

Var(θBOOT)kk .

where θBOOT denotes the bootstrapping estimator.
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Bootstrapping Algorithm: Constant Variance Data

In the above procedures, the {r̄1,. . . ,r̄N } are realizations of i.i.d.
random variables R̄j with the empirical distribution function FN .
It can be shown that

E(R̄j |FN) = N−1
N∑

j=1

r̄j = 0, Var(R̄j |FN) = N−1
N∑

j=1

r̄2
j = σ̂2.
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Results of Numerical Simulations

We created noisy data sets for the logistic mode using =
simulations and a time vector of length N = 50 [10].
The underlying logistic model with the true parameter
values θ0 = (17.5,0.7,0.1)T was solved for
f (tj ;θ0) = x(tj ;θ0) using the Matlab function ode45 where
θ = (K , r , x0)T .
A noise vector of length N with noise level σ0, was taken
from a random number generator for N (0, σ2

0). T
The constant variance data sets were obtained from the
equation

yj = f (tj ;θ0) + ε̃j .

Constant variance data sets were created for 1%, 5%, and
10% noise, i.e., σ0 = 0.01,0.05, and 0.1.
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Results of Numerical Simulations

We used the constant variance (CV) data with OLS to
carry out the parameter estimation calculations.
The bootstrapping estimates were computed with
M = 1000. We use M = 1000 because we are computing
confidence intervals and not only estimates and standard
errors, and Efron and Tibirshani [28] recommend that
M = 1000 when confidence intervals are to be computed.
The standard errors SEk (θ̂) and corresponding confidence
intervals [θ̂k − 1.96SEk (θ̂), θ̂k + 1.96SEk (θ̂)] are listed in
tables below.
We plot the empirical distributions for the case σ0 = 0.05;
plots in the other two cases are quite similar.
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Results of Numerical Simulations

Asymptotic and bootstrap OLS estimates for CV data,
σ0 = 0.01.

θ θ̂ SE(θ̂) 95% CI
K̂asy 17.498576 0.002021 (17.494615, 17.502537)
r̂asy 0.700186 0.000553 (0.699103, 0.701270)

(x̂0)asy 0.100044 0.000407 (0.099247, 0.100841)
K̂boot 17.498464 0.001973 (17.494597, 17.502331)
r̂boot 0.700193 0.000548 (0.699118, 0.701268)

(x̂0)boot 0.100034 0.000399 (0.099252, 0.100815)
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Results of Numerical Simulations

Asymptotic and bootstrap OLS estimates for CV data,
σ0 = 0.05.

θ θ̂ SE(θ̂) 95% CI
K̂asy 17.486571 0.010269 (17.466444, 17.506699)
r̂asy 0.702352 0.002825 (0.696815, 0.707889)

(x̂0)asy 0.098757 0.002050 (0.0947386, 0.102775)
K̂boot 17.489658 0.010247 (17.469574, 17.509742)
r̂boot 0.702098 0.002938 (0.696339, 0.707857)

(x̂0)boot 0.0990520 0.002152 (0.094834, 0.103270)
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Results of Numerical Simulations

Asymptotic and bootstrap OLS estimates for NCV data,
σ0 = 0.1.

θ θ̂ SE(θ̂) 95% CI
K̂asy 17.081926 0.262907 (16.566629, 17.597223)
r̂asy 0.727602 0.078513 (0.573717, 0.881487)

(x̂0)asy 0.082935 0.047591 (-0.010343, 0.176213)
K̂boot 17.095648 0.250940 (16.603807, 17.587490)
r̂boot 0.733657 0.081852 (0.573228, 0.894087)

(x̂0)boot 0.094020 0.054849 (-0.013484, 0.201524)
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Results of Numerical Simulations

Computational times (sec) for asymptotic theory vs.
bootstrapping.

Noise Level Asymptotic Theory Bootstrapping
1% 0.017320 4.285640
5% 0.009386 4.625428
10% 0.008806 4.914146
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Results of Numerical Simulations
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Figure: Bootstrap parameter distributions corresponding to 5% noise
with CV.

H.T. Banks Inverse Problem Tutorial

Figure: Bootstrap parameter distributions corresponding to 5% noise
with CV.
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Results of Numerical Simulations

Remarks:

The parameter estimates and standard errors are
comparable between the asymptotic theory and the
bootstrapping theory for this case of constant variance.
The computational times are two to three orders of
magnitude greater for the bootstrapping method as
compared to those for the asymptotic theory.
The asymptotic approach would appear to be the more
advantageous method for this simple example.
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computational model for proliferation dynamics of division-

Kevin Flores Least squares tutorial



83/83

and label-structured populations, arXive.org,
arXiv:1202.4923v1, 22 February 2012.

[34] E.D. Hawkins, M.L. Turner, M.R. Dowling, C. van Gend,
and P.D. Hodgkin, A model of immune regulation as a
consequence of randomized lymphocyte division and death
times, Proc. Natl. Acad. Sci., 104 (2007), 5032–5037.

[35] R.I. Jennrich, Asymptotic properties of non-linear least
squares estimators, Ann. Math. Statist., 40 (1969),
633–643.

[36] M. Kot, Elements of Mathematical Ecology, Cambridge
University Press, Cambridge, 2001.

[37] T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A.
Meyerhans, and G. Bocharov, Numerical modelling of
label-structured cell population growth using CFSE
distribution data, Theoretical Biology and Medical
Modelling, 4 (2007), Published Online.

Kevin Flores Least squares tutorial



83/83

[38] N. Matloff, R. Rose, R. Tai, A comparison of two methods
for estimating optimal weights in regression analysis, J.
Statist. Comput. Simul., 19 (1984), 265–274.

[39] T. J. Rothenberg, Approximate normality of generalized
least squares estimates, Econometrica, 52(4) (1984),
811–825.

[40] W. Rudin, Principles of Mathematical Analysis, 2nd
edition, McGraw-Hill, New York, 1964.

[41] D. Schittler, J. Hasenauer, and F. Allgöwer, A generalized
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