Mixed-Effects Biological Models: Estimation and Inference

Hulin Wu, Ph.D. Dr. D.R. Seth Family Professor & Associate Chair

Department of Biostatistics School of Public Health University of Texas Health Science Center at Houston

July, 2016

Outline

- 1 Statistical vs. mathematical models
- 2 Inverse problem for biological mathematical models
- 3 Statistical estimation and inference
 - LS or MLE principle
 - Smoothing-based methods
 - Bayesian methods
- 4 Sparse longitudinal data: mixed-effects models
- 5 Examples
 - High-dimensional mixed-effects models for time course gene expression data
 - PK/PD models for AIDS clinical data
- 6 Mixed-effects state-space models: HIV dynamics
- 7 Future Work

Hulin Wu

Statistical vs. Mechanism-Based Mathematical Models for Biological Systems

Empirical Statistical Models: Linear, nonlinear, nonparametric or semiparametric models

- What do the data look like?
- Developed after data collection
- No biological mechanism assumptions required
- Mechanisms-Based Math Biological Models:
 - How are the data generated?
 - Can be developed before data collection
 - Biological mechanisms required
- Hybrid of Math and Statistical Models
 - Partial data-driven and partial mechanism-driven models

Mathematical Models for Biological Systems

Differential equations:

- Ordinary differential equations (ODE)
- Delay differential equations (DDE)
- Hybrid differential equations (HDE)
- Partial differential equations (PDE)
- Stochastic differential equations (SDE)
- Difference equations and state-space models
- Stochastic processes models: branching process etc.
- Agent-based models and cellular automata
- Network models: Boolean, Bayesian, Petri nets

...

A Dynamic System: ODE Model

$$\frac{d}{dt}\boldsymbol{X}(t) = G[\boldsymbol{X}(t), \boldsymbol{\theta}], \quad \boldsymbol{X}(0) = \boldsymbol{X}_0$$
(1)

$$Y(t_i) = H[X(t_i), \theta] + e(t_i),$$

$$e(t_i) \sim (0, \sigma^2 I), \quad i = 1, \dots, n$$
(2)

where

- (3)-state equation
- (4)-observation equation
- $G(\cdot)$: linear or nonlinear functions
- $H(\cdot)$: observation functions
- θ : a vector of unknown parameters
- X₀: Initial conditions
- *e*(*t_i*): measurement error
- Closed-form solution may not exist

Modeling Objectives

• Forward Problems: $\theta \mapsto \mathbb{P}_{\theta}$

- Predictions
- Simulations

• Inverse Problems: $Y \mapsto \theta \in \Theta$

- θ : constant parameters
- $\theta(t)$: time-varying parameters

Inverse Problems: More Challenging

- Identifiability issues
- Need to solve the forward problem first
- The forward problem: often no close-form solution, need intensive numerical evaluations
- Lack of development of statistical methods, theories and software tools for complex math models
- Computationally challenging

Identifiability issues

- Need to be investigated before the inverse problem
- Theoretical identifiability: Mathematical identifiability
- Practical identifiability: Statistical and numerical identifiability

Identifiability issues: References

- Wu, H., Zhu, H., Miao, H., and Perelson, A.S. (2008), Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models, Bulletin of Mathematical Biology, 70(3), 785-799.
- Miao, H., Dykes, C., Demeter, L.M., Cavenaugh, J., Park, S.Y., Perelson, A.S., and Wu, H. (2008), Modeling and Estimation of Kinetic Parameters and Replicative Fitness of HIV-1 from Flow-Cytometry-Based Growth Competition Experiments, Bulletin of Mathematical Biology, 70, 1749-1771.
- Miao, H., Dykes, C., Demeter, L., Wu, H. (2009), Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multi-Model Inference, Biometrics, 65, 292-300.
- Liang, H., Miao, H., and Wu, H. (2010), Estimation of constant and time-varying dynamic parameters of HIV infection in a nonlinear differential equation model, Annals of Applied Statistics, 4, 460-483.
- Miao, H., Xia, X., Perelson, A.S., Wu, H. (2011), On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics, SIAM Review, 53(1): 3-39.

Statistical Estimation Methods for ODE Models

► The nonlinear LS or MLE principle:

- numerically solve the ODE
- global optimization method: differential evolution algorithm or scatter search methods
- computation: expensive and convergence problems

Smoothing-based approaches

- avoid numerically solving the ODE
- easy to implement: fast
- efficient for high-dimensional ODEs
- not accurate

Bayes methods

- use prior to solve the identifiability problem
- good for both cross-sectional data and longitudinal data
- computation: expensive

Statistical Estimation Methods for ODE Models: Longitudinal Data

Deal with sparse data: Borrow information across subjects

- ► The MLE principle: Nonlinear Mixed-Effects Modeling (NLME)
 - Treat the ODE solution as a nonlinear regression function
 - Computational challenge: Stochastic Approximation EM (SAEM)
- Two-step smoothing-based approaches
 - Linear ODE: Linear mixed-effects model (LME)
 - Nonlinear ODE: NLME
- Bayes methods
 - A three-stage hierarchical model: implemented by MCMC
 - Computation: expensive

Mixed-Effects ODE Model: NLME

Within-subject variation:

$$\frac{d}{dt} \mathbf{X}(t) = G[\mathbf{X}(t), \boldsymbol{\theta}_i], \quad \mathbf{X}(0) = \mathbf{X}_{i0}$$

$$\mathbf{Y}_i(t_i) = H_i[\mathbf{X}_i(t_i), \boldsymbol{\theta}_i] + \mathbf{e}_i(t_i), \quad i = 1, \dots, n$$
(3)

•
$$X_i(t_i)$$
: ODE solution for Subject *i*.
• $Y_i = (y_{i1}(t_1), \cdots, y_{im_i}(t_{m_i}))^T$: Data from Subject *i*
• $\mathbf{e}_i = (e_i(t_1), \cdots, e_i(t_{m_i}))^T \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_{m_i})$: Measurement error

Between-subject variation:

$$oldsymbol{ heta}_i = oldsymbol{\mu} + \mathbf{b}_i, \quad \left[\mathbf{b}_i | oldsymbol{\Sigma}
ight] \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma})$$

- µ: population parameter
- b_i: random effects

Mixed-Effects ODE Model: NLME

Estimation and inference: SAEM

- Maximum likelihood estimation (MLE) principle: Treat random-effects as missing and use the EM algorithm
- Stochastic Approximation EM (SAEM): Delyon, Lavielle and Moulines, Annals of Statistics (1999)
- SAEM coupled with MCMC for ODE : Kuhn and Lavielle, Computational Statistics and Data Analysis (2005)
- SAEM coupled with MCMC for precomputation and parallel version for ODE and PDE: Grenier, Louvet, Vigneaux, ESAIM Mathematical Modelling and Numerical Analysis (2014)

Mixed-Effects ODE Model: SAEM

- Maximum likelihood estimation (MLE) principle: Maximize the observed-data likelihood with respect to the population parameters $l(\boldsymbol{\mu}) = \int \log f(\boldsymbol{Y}_i, \boldsymbol{b}_i; \boldsymbol{\mu}) d\boldsymbol{b}_1 \dots d\boldsymbol{b}_n$
- EM Algorithm: iteratively maximize the following
 - E-step: evaluate

$$Q(\boldsymbol{\mu}|\boldsymbol{\mu}_k) = \int \log f(\boldsymbol{Y}_i, \boldsymbol{b}_i; \boldsymbol{\mu}) p(\boldsymbol{b}_i|\boldsymbol{Y}_i; \boldsymbol{\mu}_k) d\boldsymbol{b}_1 \dots d\boldsymbol{b}_n$$

- M-step: Obtain μ_{k+1} by maximizing $Q(\mu|\mu_k)$
- SAEM: E-step is split into
 - Simulation Step (S-Step): Generate a realization of the missing data vector b based on the conditional distribution of p(b_i|Y_i; μ_k)
 - Stochastic approximation integration step: stochastic average

$$s_k = s_{k-1} + \gamma_k \left(\tilde{S}(\boldsymbol{Y}, \boldsymbol{b}_k) - s_{k-1} \right)$$

 SAEM with MCMC: Use MCMC (including Metropolis-Hastings algorithm) in the simulation step (S-Step) of the SAEM

Mixed-Effects ODE Model: SAEM

- Evaluation of likelihood function or conditional distribution: need to numerically solve ODE
- Computationally challenging
- Convergence: slow
- Many local solutions

Smoothing-Based Approaches

 Two-step decoupling approaches: Chen and Wu (JASA 2008, Statistica Sinica 2008) and Liang and Wu (JASA, 2008)

- avoid numerically solving the ODE
- easy to implement: fast
- efficient for high-dimensional ODEs
- not accurate

Parameter cascading method: Ramsay et al. JRSS-B (2007) and Wang et al. Stat Comput 2014.

- A 3-step iterative algorithm
- Computationally stable
- Convergence: slow

Chen and Wu (JASA 2008, Statistica Sinica 2008) and Liang and Wu (JASA, 2008):

$$\boldsymbol{X}'(t_i) = F[\boldsymbol{X}(t_i), \boldsymbol{\theta}]$$
(4)

$$Y(t_i) = X(t_i) + e_1(t_i), \quad e_1(t_i) \sim (0, \sigma^2 I),$$
 (5)

- Step 1: Use a nonparametric smoothing to estimate X(t) and X'(t) from model (5).
- Step 2: Substitute the estimate $\hat{X}(t_i)$ into model (4) to obtain:

$$\hat{X}'(t_i) = F[\hat{X}(t_i), \theta] + e_2(t_i).$$
 (6)

Then fit the above regression model (6) to estimate θ .

Smoothing-Based Approaches: Two-Step Methods

- $F(\cdot)$: Linear or nonlinear function
- Step 2 decoupled the system of ODEs: Fit the ODE one-by-one
- Standard regression software tools can be used
- Fast
- Extension to higher-order numerical discretization-based algorithms: Wu, Xue andKuman (Biometrics 2012)
- Price to pay: Inaccurate
 - The derivative estimate may not be accurate
 - The decoupled system: Some information lost

- Require computationally fast and efficient methods
- Need to incorporate variable selection approaches: LASSO, SCAD etc.
- Easy to deal with longitudinal data: Mixed-effects models
- Two-step smoothing-based method: good for this purpose

Example: High-Dimensional ODEs for Longitudinal Gene Expression Data

Time course gene expression data: Dynamic gene regulatory network (GRN) reconstruction (Lu et al, JASA 2011)

- Screening significant gene expression curves
- 2 Clustering individual gene into functional modules
- Smoothing time course data to obtain population(mean) expression pattern and its derivative
- 4 Identifying significant regulations among different modules
- Estimation refinement for functional module-based GRN for mixed-effects ODE models
- 6 Function enrichment analysis for annotating identified GRN

Step I: Screening significant gene expression curves

 Smoothing using the function principle component analysis (FPCA)

$$y_{ijk} = x_i(t_j) + \varepsilon_{ijk}, \quad x_i(t) = \sum_{l=0}^{L_i} c_{il}\phi_l(t),$$

where $\phi_l(t)$ are principle components (eigenfunctions)

Test statistics: goodness-of-fit (signal to noise ratio)

$$F_i = \frac{SS_i^0 - SS_i^1}{SS_i^1}$$

- Null distribution of the test statistic: permutation
- ▶ p-value for the *i*-th gene (proble set):

$$p = \sum_{b=1}^{B} \frac{\#\{j : F_j^b \ge F_i, j = 1, \dots, n\}}{nB}$$

Multiple testing adjustment: Benjamin and Hochberg (1995)

Hulin Wu

Step II: Clustering significant gene expression curves

- Dimension reduction
- Biological justification
 - Expression profile of a group of genes cannot be distinguished from each other
 - Genes in the same group share particular biological functions

Nonparametric Mixed-Effects Model with Mixture Model (Ma et al. 2006)

$$Y_{i} \sim w_{1} \mathcal{N}(\mu_{1}(T_{i}), \Sigma_{1}) + w_{2} \mathcal{N}(\mu_{2}(T_{i}), \Sigma_{2}) + \cdots, + w_{p} \mathcal{N}(\mu_{p}(T_{i}), \Sigma_{p})$$
(7)
$$i = 1, \cdots, n$$
$$Y_{i} = \mu_{k}(T_{i}) + Z_{i} b_{i} + \epsilon_{i},$$
(8)

 $\mu_k(.)$: mean curve of cluster k with a smoothing spline representation

Step III: Smoothing

- Time course data for all genes within the same module can be treated as longitudinal data
- Mixed-effects modeling approach is necessary
- Nonparametric models accounts for irregular expression pattern

Nonparametric Mixed-Effects Smoothing Model (Wu and Zhang 2002, 2006)

$$y_{ki}(t_{ij}) = M_k(t_{ij}) + V_{ki}(t_{ij}) + \epsilon(t_{ij})$$
 (9)

- Local polynomial
- Regression spline
- Smoothing spline
- Penalized spline

Hulin Wu

Step IV: Identifying Significant Regulations

Two Stage Method (Chen and Wu 2008a, 2008b; Liang and Wu 2008):

- Obtain mean expression curves and their derivatives $\hat{M}_k(t)$ and $\hat{M}'_k(t)$ from Step II.
- ▶ Substitute $\hat{M}_k(t)$ and $\hat{M}'_k(t)$ into the ODE model (??) to form a regression model

High Dimensional Linear Regression Model

$$y_k(t) = \sum_{j=1}^p \beta_{kj} x_j(t) + \varepsilon_k(t),$$

$$k = 1, \cdots, p; \quad t = t_1, t_2, \dots, t_N$$

$$y_k(t) = \hat{M}'_k(t) \text{ and } x_j(t) = \hat{M}_j(t)$$

High Dimensional Model Selection

Two-stage method

- Decouple the high-dimensional ODEs
- Convert the ODE model into a simple linear model
- Computationally fast
- Stepwise selection and subset selection
- Bridge selection (Frank and Friedman 1993)
- Least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996)
- Smoothly Clipped Absolute Deviation (SCAD)(Fan and Li 2001; Kim, Choi and Oh 2008)

Step V: Estimation Refinement: Stochastic Approximation EM (SAEM) Algorithm

Mixed-Effects ODE Model for Module k

$$\frac{dx_{ki}}{dt} = \sum_{j=1}^{m_k} \beta_{kij} M_{[kj]}(t), \quad i = 1, \cdots, n_k; \quad k = 1, \dots, p,$$
(10)

Longitudinal Measurement Model

$$y_{ki}(t) = x_{ki}(t) + \varepsilon_{ki}(t)$$
(11)

Random Effects Model

$$eta_{ki} = eta_k + \mathbf{b}_{ki}$$
 (12)
 $\mathbf{b}_{ki} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_k)$

Step VI: Function Enrichment Analysis

- A tool for annotating modules
- Certain biological function(s) may be over-represented by genes of the same module compared to population of genes in an organism or a biological process
- Hypergeometric distribution can detect such enriched function(s)

Example: Identification of Dynamic GRN for Yeast Cell Cycle

DNA microarrays experiment: 18 equally spaced time points during two cell cycles (Spellman 1998)

- Step I: 800 significant genes identified
- Step II: Cluster 800 genes into 41 functional modules
- Step III: Smoothing
- Step IV: Linear ODE model identification: SCAD variable selection
- Step V: Estimation Refinement
- Step VI: Function Enrichment Analysis

Yeast Cell Cycle Gene Expression Profile

Yeast Cell Cycle Gene Expression Profile

Yeast Cell Cycle Gene Expression Profile

Graph of Yeast Cell Cycle GRN

Bayesian Methods: Mechanistic Model for HIV Infection with Treatment

Huang, Liu and Wu, Biometrics (2006)

 A viral dynamic model: describe the population dynamics of HIV and its target cells in plasma

$$\frac{\frac{d}{dt}T}{\frac{d}{dt}T} = \lambda - \rho T - [1 - \gamma(t)]kTV$$

$$\frac{d}{dt}T^* = [1 - \gamma(t)]kTV - \delta T^*$$

$$\frac{d}{dt}V = N\delta T^* - cV$$
(13)

- T, T^*, V : target uninfected cells, infected cells, virus
- $\gamma(t)$: time-varying antiviral drug efficacy
- $(\lambda, \rho, k, \delta, N, c)$: unknown parameters to be estimated
- The equations (13): no closed-form solution

Antiviral Drug Efficacy Model

• A modified E_{max} (M-M) model for drug efficacy:

$$\gamma(t) = \frac{C(t)A(t)}{\phi IC_{50}(t) + C(t)A(t)} = \frac{IQ(t)A(t)}{\phi + IQ(t)A(t)}, \quad 0 \le \gamma(t) \le 1$$
(14)

- C(t): the plasma drug concentration
- A(t): drug adherence measurements
- IC₅₀: in vitro phenotype drug resistance marker
- ϕ : a conversion factor parameter
- $IQ = \frac{C(t)}{IC_{50}(t)}$: the Inhibitory Quotient (IQ)
- If $\gamma(t) = 1$, the drug: 100% effective
- If $\gamma(t) = 0$, the drug: no effect

Drug Susceptibility Model

- Phenotype marker IC₅₀ is used to quantify agent-specific drug sensitivity
- ▶ The function: to describe changes overtime in *IC*₅₀

$$IC_{50}(t) = \begin{cases} I_0 + \frac{I_r - I_0}{t_r} t & \text{for } 0 < t < t_r, \\ I_r & \text{for } t \ge t_r, \end{cases}$$
(15)

- ► I₀ and I_r: respective values of IC₅₀(t) at baseline and time point t_r at which drug resistant mutations appear
- If $I_r = I_0$, no resistance mutation developed during treatment

How to Estimate the Unknown Parameters in the Dynamic PK/PD Model?

- Difficulties:
 - Identifiability problem: Too many parameters, (φ, λ, ρ, k, δ, N, C), some of them are not identifiable
 - Data from individuals: sparse, only V(t) measured
 - Nonlinear differential equations model: no closed-form solutions

Viral load data from a clinical trial

Real data up to day 112

Time (days)

Bayesian Hierarchical Modeling Approach

- Propose a three-stage hierarchical (mixed-effects) model
- Advantages of Bayesian hierarchical modeling approach
 - Naturally incorporate prior information
 - Deal with extremely complicated models such as nonlinear differential equation models
 - Ease the identifiability problem
 - Use posterior distributions to easily answer inference questions
 - Estimate parameters for both population and individuals

Bayesian Modeling

- A three-stage Bayesian hierarchical model
- Stage 1. Within-subject variation:

$$\mathbf{y}_i = \mathbf{f}_i(\boldsymbol{\theta}_i) + \mathbf{e}_i, \quad [\mathbf{e}_i | \sigma^2, \boldsymbol{\theta}_i] \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_{m_i})$$

•
$$\mathbf{f}_i(\boldsymbol{\theta}_i) = (f_{i1}(\boldsymbol{\theta}_i, t_1), \cdots, f_{im_i}(\boldsymbol{\theta}_i, t_{m_i}))^T$$
: ODE solutions.
• $\mathbf{y}_i = (y_i, (t_i), \cdots, y_i, (t_i))^T$: Data from Subject *i*

•
$$\mathbf{e}_i = (e_i(t_1), \cdots, e_i(t_{m_i}))^T$$
: Measurement error

Stage 2. Between-subject variation:

$$oldsymbol{ heta}_i = oldsymbol{\mu} + \mathbf{b}_i, \quad \left[\mathbf{b}_i | oldsymbol{\Sigma}
ight] \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma})$$

Stage 3. Hyperprior distributions:

$$\sigma^{-2} \sim Ga(a,b), \quad \boldsymbol{\mu} \sim \mathcal{N}(\boldsymbol{\eta}, \boldsymbol{\Lambda}), \quad \boldsymbol{\Sigma}^{-1} \sim Wi(\boldsymbol{\Omega}, \nu)$$

- ▶ Gamma (Ga), Normal (N) and Wishart (Wi): independent distributions
- Hyper-parameters $a, b, \eta, \Lambda, \Omega$ and ν : known

Bayesian Estimation: Implementation

Choose prior distributions

- Informative prior and non-informative prior
- Rule of thumb: choose non-informative prior distributions for parameters of interest
- Implement MCMC algorithm
 - Gibbs sampling step: closed form of conditional distributions for $\sigma^{-2}, \mu, \Sigma^{-1}$
 - Metropolis-Hastings step: no closed form of conditional distributions for θ_i
- Run a long chain: the number of iterations, initial "burn-in", every fifth simulation samples
- Obtain posterior distributions (posterior means or credible intervals) based on the final MCMC samples

- A study of HIV-1 infected patients failing PI-containing therapies.
- Two salvage regimens: 44 patients
 - Arm A: IDV 800 mg q12h+RTV 200mg q12h+two NRTIs
 - Arm B: IDV 400 mg q12h+RTV 400mg q12h+two NRTIs
- Plasma HIV-1 RNA (viral load) measured at days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up

Parameter	PM	SD	95% Cl
ϕ	2.1091	0.6354	(1.2143, 3.6392)
c	2.9867	0.1466	(2.7139, 3.2881)
δ	0.3729	0.0184	(0.3387, 0.4105)
λ	100.645	4.9431	(91.497, 110.830)
ρ	0.0997	0.0049	(0.0905, 0.1099)
Ň	1004.988	49.795	(912.074, 1106.654)
k	9.183×10^{-6}	0.290×10^{-6}	$(8.632 \times 10^{-6}, 9.774 \times 10^{-6})$

- Posterior mean for the population parameter φ is 2.1091 with a SD of 0.6354 and the 95% CI of (1.2143, 3.6392)
- ► As φ plays a role of transforming the *in vitro* IC₅₀ into *in vivo* IC₅₀, our estimate shows that there is about 2-fold difference between *in vitro* IC₅₀ and *in vivo* IC₅₀

Patient	ϕ_i	c_i	δ_i	λ_i	$ ho_i$	N_i	k_i	e
1	0.447	2.254	0.270	410.462	0.024	456.757	8.33×10^{-6}	0.97
2	5.371	2.969	1.183	29.619	0.426	4795.813	10.84×10^{-6}	0.17
3	3.723	2.283	0.456	36.877	0.289	3258.347	8.66×10^{-6}	0.37
4	4.960	2.761	0.798	44.956	0.313	3051.988	9.09×10^{-6}	0.34
5	7.066	2.306	0.663	71.295	0.201	2735.239	6.54×10^{-6}	0.64
6	0.786	4.633	0.183	375.882	0.025	247.416	11.18×10^{-6}	0.89
7	0.091	7.008	0.299	4015.398	0.003	30.559	18.54×10^{-6}	0.98
8	8.484	2.280	0.663	32.722	0.416	4530.531	8.37×10^{-6}	0.24

The individual-specific parameter estimates suggest a large inter-subject variation

The model provides a good fit to the clinical data

Patient 1

Fitted individual curves, drug efficacy, IC50 and adherence with IQ=c12h/IC50

UTSPH

Hulin Wu

Patient 2

UTSPH

Patient 3

UTSPH

Linear SSM:

$$X_{t+1} = F_t X_t + V_t, \quad V_t \sim (0, Q_t)$$

$$Y_t = G_t X_t + W_t, \quad W_t \sim (0, R_t)$$
(16)
(17)

where

- ► V_t and W_t: independent model noise and measurement noise
- Standard Kalman filter (Kalman, 1960): the core algorithm for prediction and smoothing of state state vectors

Mixed-Effects State-Space Models

Liu, Lu, Niu and Wu, Biometrics (2011):

Stage 1: Within-subject variation

$$\mathbf{X}_{i,t+1} = \mathbf{F}(\boldsymbol{\theta}_i)\mathbf{X}_{it} + \mathbf{V}_{it}, \quad \mathbf{V}_{it} \sim \mathrm{N}(0, \mathbf{Q}),$$
 (18)

$$Y_{it} = G(\boldsymbol{\theta}_i) X_{it} + W_{it}, \quad W_{it} \sim N(0, \boldsymbol{R}), \quad (19)$$

$$i = 1, \dots, m; \quad \text{for each } i, t = 1, \dots, n_i.$$

$$\theta_i = \theta + b_i, \quad b_i \sim (0, D), \tag{20}$$

θ : population parameter

- b_i: random effect
- D: covariance of random effects

Goals:

- Estimate unknown parameters: MLE and EM algorithm
- Estimate individual state variables: Standard Kalman filter
- Estimate Population state variable X_t : Challenging

Mixed-Effects State-Space Models

Estimate population state variable X_t

 Definition of population state variable: Individual state=a dispersion from the population state,

$$X_{i,t} = X_t + Z_{i,t}, \ Z_{i,t} \sim (0, D_t)$$
 (21)

- But X_{i,t} is unobservable
- Use the estimated state vectors, $\tilde{X}_{i,t}$: Decompose

$$\tilde{X}_{i,t} = X_{i,t|n} = X_t + Z_{i,t} + \varsigma_{i,t},$$
 (22)

where $\varsigma_{i,t} \sim (0, \Sigma_{i,t})$: estimation error of $X_{i,t}$. $\Sigma_{i,t}$ can be obtained by Kalman smoothing.

- Treat X
 _{i,t} as 'data'
- ► Use EM algorithm to estimate the population state variable and dispersion variance *D*_t

Liu, Lu, Niu and Wu, Biometrics (2011):

- SAEM Algorithm
- Bayesian method
- Application to HIV viral dynamic models

Extension to SDE and PDE: Possible but Challenging

- Theoretically difficult
- Computationally challenging
- Applications: Not common

Ongoing and Future Research

- High-dimensional ODEs
 - How to improve accuracy without sacrificing too much on computing?
 - How to deal with nonlinear ODEs?
- Constrained ODEs
- Large ODE system characteristic analyses

Our recent work in high-dimensional ODE models

- Lu, T., Liang, H., Li, H., Wu, H. (2011), High Dimensional ODEs Coupled with Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification, JASA, 106, 1242-1258.
- Wu, H., Xue, H., Kumar A. (2012), Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research, Biometrics, 68(2), 344-353.
- Wu, S, and Wu, H. (2013), More Powerful Significant Testing for Time Course Gene Expression Data Using Functional Principal Component Analysis Approaches, BMC Bioinformatics, 14:6.
- Wu, H., Lu, T.+, Xue, H., and Liang, H. (2014), Sparse Additive ODEs for Dynamic Gene Regulatory Network Modeling, JASA, 109:506, 700-716.
- Wu, S., Liu, Z.P.+, Qiu, X., and Wu, H. (2014), Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations, PLOS ONE, 9(5):e95276.
- Linel, P., Wu, S., Deng, N., Wu, H. (2014), Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches, Journal of PK/PD, 41, 509-521.
- Qiu, X. et al. (2015), Diversity in Compartmental Dynamics of Gene Regulatory Networks: The Immune Response in Primary Influenza A Infection in Mice, PLoS ONE, 10(9).

Thank You!