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Statistical vs. mathematical models
Inverse problem for biological mathematical models

Statistical estimation and inference
> LS or MLE principle
» Smoothing-based methods
» Bayesian methods

Sparse longitudinal data: mixed-effects models
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» High-dimensional mixed-effects models for time course gene
expression data
» PK/PD models for AIDS clinical data
@A Mixed-effects state-space models: HIV dynamics

Future Work
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Statistical vs. Mechanism-Based Mathematical

Models for Biological Systems

» Empirical Statistical Models: Linear, nonlinear, nonparametric or
semiparametric models
» What do the data look like?
» Developed after data collection
» No biological mechanism assumptions required
» Mechanisms-Based Math Biological Models:
» How are the data generated?
» Can be developed before data collection
» Biological mechanisms required
» Hybrid of Math and Statistical Models
» Partial data-driven and partial mechanism-driven models
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Mathematical Models for Biological Systems

v

Differential equations:

Ordinary differential equations (ODE)
Delay differential equations (DDE)
Hybrid differential equations (HDE)
Partial differential equations (PDE)
Stochastic differential equations (SDE)

vyvYyvVvVYVvYyy

Difference equations and state-space models
Stochastic processes models: branching process etc.
Agent-based models and cellular automata

Network models: Boolean, Bayesian, Petri nets

vV v.v. vy
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A Dynamic System: ODE Model

CX() = GIX().6, X(0)=Xq (1)
V() = HIX(1).0] +elt), @
e(t;) ~(0,0%I), i=1,...,n

where

> (3)—state equation

» (4)—observation equation
G(-): linear or nonlinear functions
H(-): observation functions
0: a vector of unknown parameters
X : Initial conditions
e(t;): measurement error
Closed-form solution may not exist

vV V. v v VvY
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Modeling Objectives

» Forward Problems: 6 — Py

» Predictions
» Simulations

» Inverse Problems: Y — 0 € ©

» 0: constant parameters
> 0(t): time-varying parameters
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Inverse Problems: More Challenging

v

Identifiability issues

v

Need to solve the forward problem first

v

The forward problem: often no close-form solution, need
intensive numerical evaluations

v

Lack of development of statistical methods, theories and
software tools for complex math models

v

Computationally challenging
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Identifiability issues

» Need to be investigated before the inverse problem
» Theoretical identifiability: Mathematical identifiability

» Practical identifiability: Statistical and numerical identifiability
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Statistical Estimation Methods for ODE Models

» The nonlinear LS or MLE principle:
» numerically solve the ODE
» global optimization method: differential evolution algorithm or
scatter search methods
» computation: expensive and convergence problems

» Smoothing-based approaches

» avoid numerically solving the ODE
easy to implement: fast
efficient for high-dimensional ODEs
not accurate

vYyy

» Bayes methods

» use prior to solve the identifiability problem
» good for both cross-sectional data and longitudinal data
» computation: expensive
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Statistical Estimation Methods for ODE Models:

Longitudinal Data

Deal with sparse data: Borrow information across subjects
» The MLE principle: Nonlinear Mixed-Effects Modeling (NLME)
» Treat the ODE solution as a nonlinear regression function
» Computational challenge: Stochastic Approximation EM (SAEM)
» Two-step smoothing-based approaches

» Linear ODE: Linear mixed-effects model (LME)
» Nonlinear ODE: NLME

» Bayes methods

» A three-stage hierarchical model: implemented by MCMC
» Computation: expensive
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Mixed-Effects ODE Model: NLME

» Within-subject variation:

X)) = CIX(0).0) X(0)= X @
Yz(tl) = Hi[Xi(ti),Hi]+ei(ti), 1=1,....n

» X ,(t;): ODE solution for Subject i.
> Y= (yi1(t1), -, Yim,; (tm;))": Data from Subject i
> e = (ei(t1), -, eiltm;))T ~ N(0,0%L,,): Measurement error

» Between-subject variation:

0, = n+ bi, [b1|2] ~ N(O,E)

> w: population parameter
> b;: random effects
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Mixed-Effects ODE Model: NLME

Estimation and inference: SAEM
» Maximum likelihood estimation (MLE) principle: Treat
random-effects as missing and use the EM algorithm

» Stochastic Approximation EM (SAEM): Delyon, Lavielle and
Moulines, Annals of Statistics (1999)

» SAEM coupled with MCMC for ODE : Kuhn and Lavielle,
Computational Statistics and Data Analysis (2005)

» SAEM coupled with MCMC for precomputation and parallel
version for ODE and PDE: Grenier, Louvet, Vigneaux, ESAIM
Mathematical Modelling and Numerical Analysis (2014)
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Mixed-Effects ODE Model: SAEM

» Maximum likelihood estimation (MLE) principle: Maximize the
observed-data likelihood with respect to the population
parameters l(p) = [log f(Y;,b; u)dby ... db,

» EM Algorithm: iteratively maximize the following

» E-step: evaluate

Qulpy) = /log (Y3, bi; p)p(bi|Yi5 py,)dby . . . dby

» M-step: Obtain p,  , by maximizing Q(p|ps;,)
» SAEM: E-step is split into
» Simulation Step (S-Step): Generate a realization of the missing
data vector b based on the conditional distribution of p(b;|Y ;; i)
» Stochastic approximation integration step: stochastic average

Sk = Sk—1 + Tk (g(Y,bk) — Skfl)

» SAEM with MCMC: Use MCMC (including Metropolis-Hastings
algorithm) in the simulation step (S-Step) of the SAEM
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Mixed-Effects ODE Model: SAEM

Evaluation of likelihood function or conditional distribution: need
to numerically solve ODE

v

v

Computationally challenging

v

Convergence: slow

v

Many local solutions
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Smoothing-Based Approaches

» Two-step decoupling approaches: Chen and Wu (JASA 2008,
Statistica Sinica 2008) and Liang and Wu (JASA, 2008)
» avoid numerically solving the ODE
» easy to implement: fast
» efficient for high-dimensional ODEs
» not accurate

» Parameter cascading method: Ramsay et al. JRSS-B (2007) and
Wang et al. Stat Comput 2014.
» A 3-step iterative algorithm
» Computationally stable
» Convergence: slow
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Smoothing-Based Approaches: Two-Step Method

Chen and Wu (JASA 2008, Statistica Sinica 2008) and Liang and Wu
(JASA, 2008):

» Step 1: Use a nonparametric smoothing to estimate X (¢) and
X'(t) from model (5).
» Step 2: Substitute the estimate X (¢;) into model (4) to obtain:

X'(t;) = F[X(t;),0] + ea(t;). (6)

Then fit the above regression model (6) to estimate 6.
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Smoothing-Based Approaches: Two-Step Methods

» F'(-): Linear or nonlinear function

v

Step 2 decoupled the system of ODEs: Fit the ODE one-by-one

v

Standard regression software tools can be used

» Fast

v

Extension to higher-order numerical discretization-based
algorithms: Wu, Xue andKuman (Biometrics 2012)

v

Price to pay: Inaccurate

» The derivative estimate may not be accurate
» The decoupled system: Some information lost
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High-Dimensional ODEs

v

Require computationally fast and efficient methods

Need to incorporate variable selection approaches: LASSO,
SCAD etc.

v

v

Easy to deal with longitudinal data: Mixed-effects models

v

Two-step smoothing-based method: good for this purpose
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Example: High-Dimensional ODEs for Longitudinal

Gene Expression Data

Time course gene expression data: Dynamic gene regulatory
network (GRN) reconstruction (Lu et al, JASA 2011)

Screening significant gene expression curves
Clustering individual gene into functional modules

Smoothing time course data to obtain population(mean)
expression pattern and its derivative

Identifying significant regulations among different modules

Estimation refinement for functional module-based GRN for
mixed-effects ODE models

@A Function enrichment analysis for annotating identified GRN
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Step |: Screening significant gene expression curves

» Smoothing using the function principle component analysis
(FPCA)

L;
visk = Ti(ty) +cijr, @) =Y cadi(t)
where ¢;(t) are principle components (eigenfunctions)

» Test statistics: goodness-of-fit (signal to noise ratio)
S8 — §s!
SSt
» Null distribution of the test statistic: permutation
» p-value for the i—th gene (proble set):

Z "

F, =

» Multiple testing adjustment: Benjamin and Hochberg (1995)
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Step II: Clustering significant gene expression curves

» Dimension reduction
» Biological justification
» Expression profile of a group of genes cannot be distinguished

from each other
» Genes in the same group share particular biological functions

Nonparametric Mixed-Effects Model with Mixture Model (Ma et al.

2006)
Y; ~ wiN (p1(Ti), B1) + woN (p2(Ti), B2) + -+, +wpN (1p(T3), Bp)  (7)
i=1,---,n
Y = p(Ts) + Zib; + e, 8)

ux(.): mean curve of cluster k with a smoothing spline representation
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Step Ill: Smoothing

» Time course data for all genes within the same module can be
treated as longitudinal data

» Mixed-effects modeling approach is necessary
» Nonparametric models accounts for irregular expression pattern

Nonparametric Mixed-Effects Smoothing Model (Wu and Zhang

2002, 2006)

Yri(tiz) = Mi(tij) + Vii(tiz) + €(tj) (9)

Local polynomial
Regression spline
Smoothing spline
Penalized spline

vV v vy
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Step IV: Identifying Significant Regulations

Two Stage Method (Chen and Wu 2008a, 2008b; Liang and Wu
2008):
» Obtain mean expression curves and their derivatives M;,(t) and
Mj (t) from Step Il

» Substitute M (t) and Mj,(t) into the ODE model (??) to form a
regression model

High Dimensional Linear Regression Model

Y (t) = 32521 By (t) + ex(t),
k: PR 2 t:tltha"'vtN
y(t) = Mj(t) and z;(t) = M;(t)
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High Dimensional Model Selection

» Two-stage method

» Decouple the high-dimensional ODEs
» Convert the ODE model into a simple linear model
» Computationally fast

» Stepwise selection and subset selection
» Bridge selection (Frank and Friedman 1993)

» Least absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996)

» Smoothly Clipped Absolute Deviation (SCAD)(Fan and Li 2001;
Kim, Choi and Oh 2008)
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Step V: Estimation Refinement: Stochastic
Approximation EM (SAEM) Algorithm

Mixed-Effects ODE Model for Module &

d:cz .
b Zﬂkm kj i=1,---,ng; k=1,...,p, (10)

Longitudinal Measurement Model

Yki(t) = Tii(t) + €ri(t) (11)1
Random Effects Model
Bri = Br + br (12)

<
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Step VI: Function Enrichment Analysis

» A tool for annotating modules

» Certain biological function(s) may be over-represented by genes
of the same module compared to population of genes in an
organism or a biological process

» Hypergeometric distribution can detect such enriched function(s)

Hulin Wu UTSPH July 2016 27/55



Example: Identification of Dynamic GRN for Yeast Cell

Cycle

DNA microarrays experiment: 18 equally spaced time points during
two cell cycles (Spellman 1998)

» Step I: 800 significant genes identified

v

Step II: Cluster 800 genes into 41 functional modules

v

Step lll: Smoothing

v

Step IV: Linear ODE model identification: SCAD variable
selection

v

Step V: Estimation Refinement

v

Step VI: Function Enrichment Analysis
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Yeast Cell Cycle Gene Expression Profile

Module 1 Module 2 Module 3 Module 4
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Yeast Cell Cycle Gene Expression Profile

Module 17 Module 18* Module 19 Module 20*
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Yeast Cell Cycle Gene Expression Profile

Module 33 Module 34 Module 35 Module 36
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Graph of Yeast Cell Cycle GRN
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Bayesian Methods: Mechanistic Model for HIV

Infection with Treatment

Huang, Liu and Wu, Biometrics (2006)

» A viral dynamic model: describe the population dynamics of HIV
and its target cells in plasma

4r = XN—pT —[1 —~y)]kTV
[1 —~()kTV — 6T* (13)
4y = N§T* —cV

9
3
I

T,T*, V: target uninfected cells, infected cells, virus
~(t): time-varying antiviral drug efficacy

(M, p, k, 0, N, ¢): unknown parameters to be estimated
The equations (13): no closed-form solution

vVYyVvVYyYy
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Antiviral Drug Efficacy Model

» A modified E,,.. (M-M) model for drug efficacy:

C()A(®) __IQ®A[)
¢ICs(t) + C(HA(t) ¢+ IQ)A(t)’

v(t) =

C(t): the plasma drug concentration

A(t): drug adherence measurements

IC50: in vitro phenotype drug resistance marker
¢: a conversion factor parameter

1Q = 545+ the Inhibitory Quotient (IQ)

Yy vy VvVYVvYYyYy

» If y(t) = 1, the drug: 100% effective

» If y(¢) = 0, the drug: no effect
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Drug Susceptibility Model

» Phenotype marker ICs5q is used to quantify agent-specific drug
sensitivity

» The function: to describe changes overtime in ICs

In+ &=Lt for0 <t <t,,
IC50(15):{ ’ e fort >t (15)

» Iy and I.: respective values of IC50(¢) at baseline and time point ¢,
at which drug resistant mutations appear
» If I, = I, no resistance mutation developed during treatment
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A Challenging Problem

How to Estimate the Unknown Parameters in the Dynamic PK/PD
Model?
» Difficulties:
> |dentifiability problem: Too many parameters, (¢, A, p, k, 9, N, C),
some of them are not identifiable
» Data from individuals: sparse, only V'(t) measured
» Nonlinear differential equations model: no closed-form solutions
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Viral load data from a clinical trial
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Bayesian Hierarchical Modeling Approach

» Propose a three-stage hierarchical (mixed-effects) model
» Advantages of Bayesian hierarchical modeling approach
» Naturally incorporate prior information
» Deal with extremely complicated models such as nonlinear
differential equation models
» Ease the identifiability problem
» Use posterior distributions to easily answer inference questions
» Estimate parameters for both population and individuals
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Bayesian Modeling

v

A three-stage Bayesian hierarchical model
Stage 1. Within-subject variation:

Yi = f’b(g’b) + e, [ei|027 01] ~ N(Oa G2Imz)

v

> £,(0;) = (fi1(05,t1), - , fim; (i, tm; )"+ ODE solutions.
> yvi = (yi1(t1), -, Yim,; (tm,))" : Data from Subject i
> e; = (ei(t1), - ,ei(tm,;))" : Measurement error

Stage 2. Between-subject variation:

0;=p+b;, [bi|X]~N(0,%)

v

v

Stage 3. Hyperprior distributions:
0 %~ Gala,b), p~N(nA), 7'~ Wi(Q,v)

» Gamma (Ga), Normal (N) and Wishart (W4i): independent distributions
> Hyper-parameters a, b, n, A, 2 and v: known
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Bayesian Estimation: Implementation

v

Choose prior distributions
» Informative prior and non-informative prior
> Rule of thumb: choose non-informative prior distributions for
parameters of interest

v

Implement MCMC algorithm
» Gibbs sampling step: closed form of conditional distributions for
LTI
» Metropolis-Hastings step: no closed form of conditional
distributions for 6;

v

Run a long chain: the number of iterations, initial “burn-in", every
fifth simulation samples

v

Obtain posterior distributions (posterior means or credible
intervals) based on the final MCMC samples
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A Clinical Study: A5055

» A study of HIV-1 infected patients failing PI-containing therapies.

» Two salvage regimens: 44 patients

» Arm A: IDV 800 mg q12h+RTV 200mg g12h+two NRTIs
» Arm B: IDV 400 mg q12h+RTV 400mg q12h+two NRTIs

» Plasma HIV-1 RNA (viral load) measured at days 0, 7, 14, 28, 56,
84,112, 140 and 168 of follow-up

Hulin Wu UTSPH July 2016 41/55



Clinical Data—Results of Population Parameters

Parameter PM SD 95% CI

é 2.1091 0.6354 (1.2143, 3.6392)

c 2.9867 0.1466 (2.7139, 3.2881)

5 0.3729 0.0184 (0.3387, 0.4105)

A 100.645 4.9431 (91.497, 110.830)

p 0.0997 0.0049 (0.0905, 0.1099)

N 1004.988 49.795 (912.074, 1106.654)

k 9.183 x 107%  0.290 x 107¢  (8.632 x 1075,9.774 x 1076)

» Posterior mean for the population parameter ¢ is 2.1091 with a
SD of 0.6354 and the 95% Cl of (1.2143, 3.6392)

» As ¢ plays a role of transforming the in vitro 1Csq into in vivo
I1C5q, our estimate shows that there is about 2-fold difference
between in vitro ICxo and in vivo ICsx
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Clinical Data—Results of Individual Parameters

Patient o)) C;i d; i Pi N; k; e
1 0.447 2254 0.270 410.462 0.024 456.757 8.33 x 10~ © 0.97
2 5.371 2.969 1.183 29.619 0.426 4795.813 10.84 x 10°¢  0.17
3 3.723  2.283  0.456 36.877 0.289  3258.347 8.66 x 107° 0.37
4 4960 2.761 0.798 44.956 0.313  3051.988 9.09 x 1076 0.34
5 7.066 2.306 0.663 71.295 0.201  2735.239 6.54 x 1076 0.64
6 0.786 4.633 0.183 375.882 0.025 247.416 11.18 x 10°%  0.89
7 0.091 7.008 0.299 4015.398 0.003 30.559 18.54 x 1075 0.98
8 8.484 2.280 0.663 32.722 0.416  4530.531 8.37 x 107° 0.24

» The individual-specific parameter estimates suggest a large inter-subject variation
> The model provides a good fit to the clinical data

Hulin Wu

UTSPH

July 2016
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Patient 1

1C50

Drug efficacy

Fitted individual curves, drug efficacy, IC50 and adherence with IQ=c12h/IC50
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Patient 2

1C50

Drug efficacy
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Patient 3

1C50

Drug efficacy
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State-Space Models (SSM)

Linear SSM:

Xip1 = FBXe+ Vi, Vi~ (0,Q4) (16)
GiXe + Wi, Wi~ (0,Ry) (17)

=
|

where
» V; and W;: independent model noise and measurement noise

» Standard Kalman filter (Kalman, 1960): the core algorithm for
prediction and smoothing of state state vectors
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Mixed-Effects State-Space Models

Liu, Lu, Niu and Wu, Biometrics (2011):
» Stage 1: Within-subject variation

Xity1 = F0)Xiu+Viy, Vi~N(0,Q), (18)
Yi = GO)Xy+ Wy, Wi ~N(O,R), (19)
i = 1,...,m; foreachijt=1,...,n;.

» Stage 2: Between-subject variation
ei = 4 + bi7 bi ~ (07 D)a (20)
0: population parameter

b;: random effect
D: covariance of random effects

Hulin Wu UTSPH July 2016
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Mixed-Effects State-Space Models

Goals:
» Estimate unknown parameters: MLE and EM algorithm
» Estimate individual state variables: Standard Kalman filter
» Estimate Population state variable X;: Challenging
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Mixed-Effects State-Space Models

Estimate population state variable X,

» Definition of population state variable: Individual state=a
dispersion from the population state,

Xiv=Xe+Ziy, Ziy ~ (0,Dy) (21)

» But X, is unobservable
» Use the estimated state vectors, )N(M: Decompose

X = KXitin = Xt + Zit + it (22)

where g; , ~ (0,%;,): estimation error of X, ;. ¥, , can be
obtained by Kalman smoothing.

» Treat X, ; as ‘data’

» Use EM algorithm to estimate the population state variable and
dispersion variance D;

Hulin Wu UTSPH July 2016
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Mixed-Effects State-Space Models

Liu, Lu, Niu and Wu, Biometrics (2011):
» SAEM Algorithm

» Bayesian method

» Application to HIV viral dynamic models

Hulin Wu UTSPH

July 2016
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Extension to SDE and PDE: Possible but Challenging

» Theoretically difficult
» Computationally challenging

» Applications: Not common
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Ongoing and Future Research

» High-dimensional ODEs
» How to improve accuracy without sacrificing too much on

computing?
» How to deal with nonlinear ODEs?
» Constrained ODEs

» Large ODE system characteristic analyses
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Our recent work in high-dimensional ODE models

» Lu, T, Liang, H., Li, H., Wu, H. (2011), High Dimensional ODEs Coupled with
Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network
Identification, JASA, 106, 1242-1258.

» Wu, H., Xue, H., Kumar A. (2012), Numerical Discretization-Based Estimation
Methods for Ordinary Differential Equation Models via Penalized Spline
Smoothing with Applications in Biomedical Research, Biometrics, 68(2), 344-353.

> Wu, S, and Wu, H. (2013), More Powerful Significant Testing for Time Course
Gene Expression Data Using Functional Principal Component Analysis
Approaches, BMC Bioinformatics, 14:6.

» Wu, H,, Lu, T.+, Xue, H., and Liang, H. (2014), Sparse Additive ODEs for
Dynamic Gene Regulatory Network Modeling, JASA, 109:506, 700-716.

» Wu, S, Liu, Z.P+, Qiu, X., and Wu, H. (2014), Modeling genome-wide dynamic

regulatory network in mouse lungs with influenza infection using

high-dimensional ordinary differential equations, PLOS ONE, 9(5):e95276.

Linel, P, Wu, S., Deng, N., Wu, H. (2014), Dynamic transcriptional signatures and

network responses for clinical symptoms in influenza-infected human subjects

using systems biology approaches, Journal of PK/PD, 41, 509-521.

Qiu, X. et al. (2015), Diversity in Compartmental Dynamics of Gene Regulatory

Networks: The Immune Response in Primary Influenza A Infection in Mice, PLoS

ONE, 10(9).

v

v
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