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Consider approximation methods in estimation or inverse
problems–quantity of interest is a probability distribution

Assume we have parameter (q 2 Q) dependent system with
model responses x(t, q) describing population of interest

For data or observations, we are given a set of values {y
l

} for
the expected values

E [x
l

(q)|P] =
Z

Q

x
l

(q)dP(q)

for model x
l

(q) = x(t
l

, q) wrt unknown probability
distribution P describing distribution of parameters q over
population
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Use data to choose from a given family P(Q) the distribution
P⇤ that gives best fit of underlying model to data

Formulate ordinary least squares (OLS) problem–not
essential–could equally well use a WLS, MLE, etc., approach

Seek to minimize

J(P) =
X

l

|E [x
l

(q)|P]� y
l

|2

over P 2 P(Q)

Even for simple dynamics for x
l

is an infinite dimensional
optimization problem–need approximations that lead to
computationally tractable schemes

That is, it is useful to formulate methods to yield finite
dimensional sets PM(Q) over which to minimize J(P)

Of course, we wish to choose these methods so that
“PM(Q) ! P(Q)” in some sense
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In this case we shall use Prohorov metric [BBPP, Bi] of weak
star convergence of measures to assure the desired
approximation results
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The data {y
l

} available (which, in general, will involve longitudinal
or time evolution data) determines the nature of the problem.

Type I: The most classical problem (which we shall refer to as
a Type I problem) is one in which individual longitudinal data
is available for each member in the population. In this case
there is a wide statistical literature (in the context of
hierarchical modeling, mixing distributions, mixed or random
e↵ects, mixture models, etc.)
[BS, DGa1, DGa2, DG1, DG2, L1, L2, LL, Ma, SRM, S1, S2]
which provides theory and methodology for estimating not
only individual parameters but also population level
parameters and allows one to investigate both intra-individual
and inter-individual variability in the population and data.
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Type II: In what we shall refer to as Type II problems one has
only aggregate or population level longitudinal data available.
This is common in marine, insect, etc., catch and release
experiments [BK] where one samples at di↵erent times from
the same population but cannot be guaranteed of observing
the same set of individuals at each sample time. This type of
data is also typical in experiments where the organism or
population member being studied is sacrificed in the process
of making a single observation (e.g., certain physiologically
based pharmacokinetic (PBPK) modeling [BPo, E, Po] and
whole organism transport models [BK]). In this case one may
still have dynamic (i.e., time course) models for individuals,
but no individual data is available.

H.T. Banks California



H.T. Banks California

∈



While the approximations we discuss below are applicable to
all three types of problems, we shall illustrate the
computational results in the context of size-structured marine
populations (mosquitofish, shrimp) and Glioblastoma
Multiforme (GBM) where the inverse problems are of Type II.

Finally, we note that in the problems considered here, one can
not sample directly from the probability distribution being
estimated and this again is somewhat di↵erent from the usual
case treated in some of the statistical literature, e.g., see
[Wahba1, Wahba2] and the references cited therein.
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Example 1: The Growth Rate Distribution Model and

Inverse Problem in Marine Populations

Motivating application: estimation of growth rate distributions
for size-structured mosquitofish and shrimp populations.

Mosquitofish used in place of pesticides to control mosquito
populations in rice fields–Marine biologists desire to correctly
predict growth and decline of mosquitofish populatio –in order
to determine the optimal densities of mosquitofish to use to
control mosquito populations–a mathematical model that
accurately describes the mosquitofish population would be
beneficial in this application, as well as in other problems
involving population dynamics and age/size-structured data.
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Based on data collected from rice fields, a reasonable
mathematical model would have to predict two key features
that are exhibited in the data: dispersion and bifurcation (i.e.,
a unimodal density becomes a bimodal density) of the
population density over time [BBKW, BI, BFPZ].

Growth rate distribution (GRD) model, developed in [BBKW]
and [BI], captures both of these features in its solutions.

Model is a modification of the Sinko-Streifer model (used for
modeling age/size-structured populations) which takes into
account that individuals have di↵erent characteristics or
behaviors.
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Figure:

Mosquitofish data.
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Sinko-Streifer model (SS) for size-structured mosquitofish
populations given by

@v

@t
+

@

@x
(gv) = �µv , x0 < x < x1, t > 0 (1)

v(0, x) = �(x)

g(t, x0)v(t, x0) =

Z

x1

x0

K (t, ⇠)v(t, ⇠)@⇠

g(t, x1) = 0.

Here v(t, x) represents size (given in numbers per unit
length) or population density, where t represents time and x
represents length of mosquitofish–growth rate of individual
mosquitofish given by g(t, x), where

dx

dt
= g(t, x) (2)

for each individual (all mqf of given size have same growth
rate)
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In SS µ(t, x) represents mortality rate of
mosquitofish–function �(x) represents initial size density of
the population, while K represents the fecundity kernel. The
boundary condition at x = x0 is recruitment, or birth rate,
while the boundary condition at x = x1 = x

max

ensures the
maximum size of the mosquitofish is x1. The SS model cannot
be used as is to model the mosquitofish population because it
does not predict dispersion or bifurcation of the population in
time under biologically reasonable assumptions [BBKW, BI].
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By modifying the SS model so that the individual growth
rates of the mosquitofish vary across the population (instead
of being the same for all individuals in the population), one
obtains a model, known as the growth rate distribution (GRD)
model–does in fact exhibit both dispersal in time and
development of a bimodal density from a unimodal density
(see [BI, BFPZ]).

In (GRD) model, population density u(t, x ;P), discussed in
[BBKW] and developed in [BI], is actually given by

u(t, x ;P) =

Z

G

v(t, x ; g)dP(g).

(3)
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G is collection of admissible growth rates, P is probability
measure on G , and v(t, x ; g) is solution of (SS) with g–
model assumes pop. made up of collections of subpopulations
–individuals in same subpopulation have same growth rate
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Based on work in [BI], solutions to GRD model exhibit both
dispersion and bifurcation of the population density in time.
Here assume that the admissible growth rates g have the form

g(x ; b, �) = b(� � x)

for x0  x  � and zero otherwise, where b is the intrinsic
growth rate of the mosquitofish and � = x1 is the maximum
size. This choice based on work in [BBKW], where idea of
other properties related to the growth rates varying among
the mosquitofish is discussed.

Under assumption of varying intrinsic growth rates and
maximum sizes, assume that b and � are random variables
taking values in the compact sets B and �, respectively. A
reasonable assumption is that both are bounded closed
intervals.
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Thus we take

G = {g(·; b, �)|b 2 B , � 2 �}

so that G is also compact in, for example, C [x0,X ] where
X = max(�). Then P(G ) is compact in the Prohorov metric
and we are in framework outlined above. In illustrative
examples, choose a growth rate parameterized by the intrinsic
growth rate b with � = 1 , leading to a one parameter family
of varying growth rates g among the individuals in the
population. We also assume here that µ = 0 and K = 0 in
order to focus on only the distribution of growth rates;
however, distributions could just as well be placed on µ and K .

Next, introduce two di↵erent approaches that can be used in
inverse problem for estimation of distribution of growth rates
of the mosquitofish
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First approach, which has been discussed and used in [BI] and
[BFPZ], involves the use of delta distibutions. We assume
that probability distributions PM placed on growth rates are
discrete corresponding to a collection GM with the form
GM = {g

k

}M
k=1 where g

k

(x) = b
k

(1� x), for k = 1, . . . ,M.
Here the {b

k

} are a discretization of B . For each
subpopulation with growth rate g

k

, there is a corresponding
probability p

k

that an individual is in subpopulation k . The
population density u(t, x ;P) in (3) is then approximated by

u(t, x ; {p
k

}) =
X

k

v(t, x ; g
k

)p
k

,

where v(t, x ; g
k

) is the subpopulation density from (SS) with
growth rate g

k

. We denote this delta function approximation
method as DEL(M), where M is number of elements used in
this approximation.
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While it has been shown that DEL(M) provides a reasonable
approximation to (3), a better approach might involve
techniques that will provide a smoother approximation of (3)
in the case of continuous probability distributions on the
growth rates. Thus, as a second approach, we chose to use an
approximation scheme based on piecewise linear splines. Here
we have assumed that P is a continuous probability
distribution on the intrinsic growth rates. We approximate the
density P 0 = dP

db

= p(b) using piecewise linear splines, which
leads to the following approximation for u(t, x ;P) in (3):

u(t, x ; {a
k

}) =
X

k

a
k

Z

B

v(t, x ; g)l
k

(b)db,

where g(x ; b) = b(1� x), p
k

(b) = a
k

l
k

(b) is the probability
density for an individual in subpopulation k and l

k

represents
the piecewise linear spline functions.
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This spline based approximation method is denoted by
SPL(M,N), where M is the number of basis elements used to
approximate the growth rate probability distribution and N is
the number of quadrature nodes used to approximate the
integral in the formula above. One can use the composite
trapezoidal rule for the approximation of these integrals [QSS].

H.T. Banks California



One can use the approximation methods DEL(M) and
SPL(M,N) in the inverse problem for the estimation of the
growth rate distributions. The least squares inverse problem
to be solved is

min
P2PM(G)

J(P) =
X

i ,j

|u(t
i

, x
j

;P)� û
ij

|2 (4)

=
X

i ,j

(u(t
i

, x
j

;P))2 � 2u(t
i

, x
j

;P)û
ij

+ (û
ij

)2,

where {û
ij

} is the data and PM(G ) is the finite dimensional
approximation to P(G ). When using DEL(M), the finite
dimensional approximation PM(G ) to the probability measure
space P(G ) is given by

PM(G ) =

(

P 2 P(G )| P 0 =
X

k

p
k

�
g

k

,
X

k

p
k

= 1

)

,
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where �
g

k

is the delta function with an atom at g
k

. However,
when using SPL(M,N), the finite dimensional approximation
PM(G ) is given by

PM(G ) =

(

P 2 P(G )| P 0 =
X

k

a
k

l
k

(b),
X

k

a
k

Z

B

l
k

(b)db = 1

)

.

Furthermore, we note that this least squares inverse problem
(4) becomes a quadratic programming problem [BI, BFPZ].
Letting p be the vector that contains p

k

, 1  k  M, when
using DEL(M) or a

k

, 1  k  M, when using SPL(M,N), we
let A be the matrix with entries given by

A
km

=
X

i ,j

v(t
i

, x
j

; g
k

)v(t
i

, x
j

; g
m

),

b the vector with entries given by

b
k

= �
X

i ,j

û
ij

v(t
i

, x
j

; g
k

),
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and
c =

X

i ,j

(û
ij

)2,

where 1  k ,m  M. In the place of (4), we now minimize

F (p) ⌘ pTAp+ 2pTb+ c (5)

over PM(G ). We note when using DEL(M) we also had to
include the constraint

X

k

p
k

= 1,

while when using SPL(M,N) we had to include the constraint

X

k

a
k

Z

B

l
k

(b)db = 1.

However, in both cases, we were able to include these
constraints along with non-negativity constraints on the {p

k

}
and {a

k

} in the programming of these two inverse problems.
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Example 2: Glioblastoma Multiforme (GBM)

Glioblastoma Multiforme (GBM) is a deadly primary brain
tumor

GBM is characterized by both high proliferation and di↵usivity

Mean Survival time with treatment is less than 15 months
after detection

Begins avascularaly, so early stages can be modeled by
spheroids

Symptoms include
hemorrhaging
nausea
vomiting
headaches
memory loss
seizures
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Figure: Sagittal cross-section of human brain with GBM
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A Biological Introduction

In 2007, Stein et. al performed cell line experiments on most
common mutation of Epidermal Growth Factor Receptor gene
(U87�EGFR) and wild-type EGFR (U87WT)
This proved there are distinct behavioral di↵erences between
’migrating’ cells and ’proliferating cells’
Concluded that migrating and proliferating cells must be
modeled separately using equation

@u
i

(r ,t)
@t = Dr2u

i

| {z }

di↵usion

+ gu
i

✓

1� u
i

umax

◆

| {z }

logistic growth

� v
i

r
r

·u
i

| {z }

taxis

+ s�(r � R(t))
| {z }

shed cells from core

Day 0 Day 1 Day 3 Day 7
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We propose to describe GBM cell phenotypic heterogeneity by
using parameter distributions for the parameters ⇢ and D. The
random di↵erential equation governing di↵usion and growth is:

@c(t, x ,DDD,⇢⇢⇢)

@t
= r · (DDDrc(t, x ,DDD,⇢⇢⇢)) + ⇢⇢⇢c(t, x ,DDD,⇢⇢⇢)(1� c(t, x ,DDD,⇢⇢⇢))

We assume that the parameters DDD and ⇢⇢⇢ are random variables
defined on a compact set ⌦ = ⌦

D

D

D

⇥ ⌦⇢⇢⇢. The distribution of the
parameters is given by P(DDD,⇢⇢⇢), and v(t, x) represents the
aggregate population observable (which is defined as the
expectation over subpopulations c(t, x ,DDD,⇢⇢⇢):

v(t, x) = E [c(t, x , ·, ·),P] =
Z

⌦
c(t, x ,DDD,⇢⇢⇢)dP(DDD,⇢⇢⇢)

The random di↵erential equation is su�ciently flexible to model
the classic reaction-di↵usion equation (assuming a point
distribution of DDD and ⇢⇢⇢) and a “go or grow” type equation
(assuming, for example, a bi-gaussian distribution of DDD and ⇢⇢⇢).
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Two di↵erent methods for approximating the probability measure
P(DDD,⇢⇢⇢) are using either delta functions or spline functions.
Although using spline functions are known to yield more accurate
convergence in the probability density function (PDF) and
cumulative distribution function (CDF), delta functions are able to
better approximate CDFs that have discontinuous derivatives.
Therefore, we illustrate use of both approximations, since we do
not wish to make any assumptions about, or restrictions on, the
CDF.
Suppose that the aggregate spatiotemporal data we want to model
is given by v

ji

, representing the data at time j and spatial location
i , where j = 1, ..,N

t

and i = 1, ...,N
x

. Then, we estimate:

P̂ = argmin
P

M(⌦)

N

t

,N
x

X

j ,i=1

(v
ji

� v(t
j

, x
i

;P))2

where M represents the number of elements used in the
approximation (explained in the sections below).
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This becomes:

P̂ = argmin
P

M(⌦)

X

j ,i

✓

v
ji

�
Z

⌦
c(t

j

, x
i

;DDD,⇢⇢⇢)dP(DDD,⇢⇢⇢)

◆2

where c is the numerical solution. Previous experimental data
[Stein2007] suggests that it is not unreasonable to assume that
data can be collected radially at spatial increments of 40 microns,
daily. This is the basis for describing the data in the form of v

ji

.
Two methods are used to approximate the probability measure P :
a discrete approximation based on delta functions, and a
continuous approximation using spline basis functions.
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Convergence and Consistency Theory

The Prohorov metric is the weak* convergence of measures when
the space of probability measures P(⌦) is imbedded in the dual
C ⇤(⌦) of space of bounded continuous functions on ⌦. We discuss
briefly convergence, consistency theory, assuming only estimating
DDD as a distribution, (we note theory extends to two parameters).
We assume a family of permissible probability functions for our
di↵usion and growth rates on P(⌦). We attempt to perform the
estimation in a least-squares framework

P̂ = argmin
P2P(⌦)

J
N

(~v ,P) = argmin
P2P(⌦)

X

j ,i

(v
ji

� v(t
j

, x
i

;P))2 (6)

to obtain a best fit for a nominal or “true” parameter P0. To
illustrate, let ⌦ = ⌦

D

D

D

be the continuum of values on [0,Dmax].
Hence family of probability functions P(⌦) is a compact metric
space in the Prohorov metric. Minimizer function is continuous in
P ; there exists a (not necessarily unique) minimizer P̂ .
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Existence of the Estimator

One can prove the existence [BanksThompson2015] of P
N

and P̂
N

as measurable functions mapping a subset of RN (that is, the data
~v 2 RN where N = (N

t

,N
x

)) into the space of probability
measures on ⌦. We remark that the statement of the existence
thm concerns the estimate P̂

N

obtained from the data realizations
~v 2 RN . This is su�cient to establish the existence of the
estimator P

N

as a measureable function as well, since the random
vector ~V is by definition a measurable function from a probability
triple into RN , and the composition of measurable functions is
measurable.
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Theorem

Define the function J
N

: RN ⇥ P(⌦) ! R according to Equation
(6). Assume (⌦, d) is separable and compact and take the space of
probability measures P(⌦) with the Prohorov metric ⇢. Assume
further that J

N

(·,P) is a measurable function from RN ! R for
each P 2 P(⌦), and that J

N

(~v , ·) : P(⌦) ! R is continuous for
each ~v 2 RN . Then there exists a measurable function
P̂
N

: RN ! P(⌦) such that

J(~v , P̂
N

(~v)) = inf
P2P(⇥)

J(~v ,P).
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In order to approximate this minimizer, we replace the infinite
dimensional optimization problem by a sequence of
finite-dimensional optimization problems with Dirac distributions.
Thus, we set ⌦M = {�

D

k

, k = 1, ..,M}, where M represents the
number of nodes, or elements, used in the approximation. Our
family of approximating probability functions becomes

PM(⌦M) =
n

PM =
M

X

k=1

w
k

�
D

k

|w
k

� 0 and
M

X

k=1

w
k

= 1
o

,

where �
D

k

represent the Dirac delta functions at the point D
k

and w
k

are the weights and/or probabilities. Again it has been
previously proven [Banks2012FA,BHT2014] that there exists a
minimizer for the discrete approximation problem

P̂M = argmin
P2PM(⌦M)

N

t

,N
x

X

j ,i=1

(v
ji

� v(t
j

, x
i

;P))2.
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There are a number of questions that arise immediately in the class
of problems we have defined. Perhaps the most obvious are
questions of convergence (what happens as M ! 1 in the Dirac
or spline approximations?) and consistency (what happens as
N = (N

t

,N
x

) ! 1?) These questions have been successfully
investigated both theoretically
([BHT2014,BPin,BanksThompson2015] and the references therein)
and computationally [BD2007,BDTR] and the references. A further
issue involves the partial di↵erential equation approximations c

Ñ

to
the solution c . Again, the necessary convergence issues have been
successfully addressed in [BHT2014,BK1989]. In summary we can
assert that the approximations P̂M

N,Ñ
converge to a true distribution

P0 as the number of elements used in the approximations increase
(i.e., M,N, Ñ ! 1).
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Consistency of the Estimator

(A1) For any fixed N = N
t

⇥ N
x

, the error random variables
{E

j

}N
j=1 are independent and identically distributed, defined on

some probability triple (⇥,⌃⇥,P⇥).
(A2) For ~E = (E1, . . . , E

N

), E [~E ] = 0 and Cov [~E ] = �2I
N

, where I
N

is the N ⇥ N identity matrix.
(A3) (⌦, d) is a separable, compact metric space; the space P(⌦)

is taken with the Prohorov metric ⇢.
(A4) For all j , 1  j  N

t

, i , 1  i  N
x

, (t
j

, x
i

) 2 T̃ for some
compact space T̃ .

(A5) The model function v 2 C (P(⌦),C (T̃ )).
(A6) There exists a measure µ on T̃ such that for all g 2 C (T̃ )

1

N

X

j ,i=1

g(t
j

, x
i

) ⌘
Z

T̃

g(t, x)dµ
N

(t, x) !
Z

T̃

g(t, x)dµ(t, x)

(A7) The functional J0(P) =
R

T̃

(v(t, x ;P0)� v(t, x ;P))2 dµ(t, x)
is uniquely minimized at P0 2 P(⌦).
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Theorem

Under assumptions (A1)-(A7), the estimators P
N

w

⇤
��! P0 as

N ! 1 with probability 1. That is,

P⌦

⇣n

✓
�

�

�

P
N

( ~V )(✓) ! P0

o⌘

= 1.
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Figure: Fits (no noise) using the optimal number of nodes (⇢⇢⇢ bigaussian;
DDD normally distributed) (left); DDD bigaussian, ⇢⇢⇢ normally distributed
(right). Top panels: pdf comparisons for actual distribution (black),
spline approximation (red), discrete approximation (blue). Middle panel:
cdf comparisons. Bottom panel: solutions of RDE.
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distributed (right) for solutions which have added noise. Top panels: pdf
comparisons for actual solution, the spline approximation and the discrete
approximation. In middle: the cdfs. Bottom: the solutions of RDE.
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Figure: Simulations of log-kill chemotherapy treatment for the case where
DDD is bigaussian and ⇢⇢⇢ is normal (left) and the case where DDD is normally
distributed and ⇢⇢⇢ is bigaussian for varying values of r (right). The
reaction-di↵usion equation, shown in blue solid line with pluses, vastly
overestimates the e�cacy of chemotherapy treatment. The RDE model
(red dashes) with parameter distributions estimated from noisy data
almost exactly match the true solution.
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