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Goal

model: y = f (x1, . . . , xp)

I response y
I inputs x1, . . . , xp

we want to:

quantify how uncertainties in the model response can
be apportioned to uncertainties in model inputs

the larger the contribution, the more important the input



Challenges

I no agreement on the meaning of important
I one SA method⇔ one definition of "importance"
I f may be

I a black box (computer code/executable)
I expensive to evaluate (⇒ few values are available)

I p may be large (high dimensional problem)



High-dim is NOT your friend (I)

it is expensive; GSA can be used to reduced parameter space
dimension (inspired by P. Constantine)

# of parameters p # of model runs time per run
(the dimension) (10 points per dim) (1 sec per run)

1 10 10 sec
2 100 1.7 min
3 1,000 17 min
4 10,000 2.8 hrs
5 100,000 28 hrs
6 1,000,000 12 days

10 1010 317 years
20 1020 3 trillion years

230 × age of universe
dimension reduction IS your friend



High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
max/min = 1308



High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
max/min = 1586



High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
max/min = 1008



High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
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High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
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High-dim is NOT your friend (II)
measuring distances gets hard (inspired by Beyer et al. 1999)
I draw 1000 points from U([0,1]p)
I compute (max distance between 2 points)/(min distance

between 2 points)
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High-dim is NOT your friend (II)

I ∀p, results from 100 sets of 1000 points are averaged
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High-dim is NOT your friend (III)
the geometry gets weird

I unit (hyper-)spheres and (hyper-)cubes centered at 0
I distance 0-vertex: p = 2√(
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= 1 on the sphere

I distance 0-vertex: in general =
√

p
2

⇒ (way) outside the sphere for p > 4; p = 400⇒ dist = 10



What kind of model do you have?

I diagnostics (understanding) vs. prognostics (predictions)
I data-driven vs. law-driven
I law-driven models are good for understanding but are

generally overparametrized



Overparametrization is bad

I makes you work in a needlessly high-dimensional space
I loses predictive power

In desperation I asked Fermi whether he was
not impressed by the agreement between our
calculated numbers and his measured numbers.
He replied, "How many arbitrary parameters did
you use for your calculations?" I thought for a
moment about our cut-off procedures and said,
"Four." He said, "I remember my friend Johnny
von Neumann used to say, with four parameters I
can fit an elephant, and with five I can make him
wiggle his trunk."

Freeman Dyson



Overparametrization is bad

I makes you work in a needlessly high-dimensional space
I loses predictive power
I easily leads to overfitting
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Overparametrization is bad

I makes you work in a needlessly high-dimensional space
I loses predictive power
I easily leads to overfitting
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Rationale for SA (inspired by Saltelli)

I model corroboration: is the inference robust?
I research prioritization: which factor most deserves further

analysis/measurement?
I model simplification: can factors/compartments be fixed or

simplified?
I model reliability: identify factors which interact and may

lead to extreme values



Elementary (linear) example (I)

y = f (x1, x2) = ax1 + bx2, a,b > 0

1. calculus:

Si =
∂y
∂xi

, i = 1,2 ⇒ S1 = a,S2 = b

problems with this approach:

I ignore range of values for x1 and x2

I for f nonlinear, this is a local approach (the derivatives
have to be evaluated somewhere)

I need to be able to compute derivatives (problematic for
black box functions)



Elementary (linear) example (II)
2. Sobol’:

I considers xi ’s as random
variables; for instance

xi ∼ N(0, σ2
i )

I apportion to them their
relative contribution to the
variance of the response

I with above distributions: y ∼ N(0, σ2
Y )

σ2
Y = a2σ2

1 + b2σ2
2 ⇒ 1 =

a2σ2
1

a2σ2
1 + b2σ2

2︸ ︷︷ ︸
S1

+
b2σ2

2

a2σ2
1 + b2σ2

2︸ ︷︷ ︸
S2

I note the importance of the σi ’s!



Elementary (linear) example (III)

Let’s take a = 2, b = 1, σ1 = 1⇒ S1 = 4
4+σ2

2
and S2 =

σ2
2

4+σ2
2
.
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Elementary (linear) example (IV)

Let’s take a = 2, b = 1, σ1 = 1⇒ S1 = 4
4+σ2

2
and S2 =

σ2
2

4+σ2
2
.
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Elementary (linear) example (IV)

Let’s take a = 2, b = 1, σ1 = 1⇒ S1 = 4
4+σ2

2
and S2 =

σ2
2

4+σ2
2
.
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Elementary (linear) example (IV)

Let’s take a = 2, b = 1, σ1 = 1⇒ S1 = 4
4+σ2

2
and S2 =

σ2
2

4+σ2
2
.
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Sobol’ indices: same idea for general case

I how about using var(y |xi = x?i ) to build an importance
measure of xi?

I not a good idea!
I answer would depend on x?

i (⇒ local)
I it can be that var(y |xi = x?

i ) > var(y)!

I both issues disappear upon averaging

Exi [varx∼i (y |xi)]

indeed by the law of total variance

F varxi (Ex∼i [y |xi ]) + Exi [varx∼i (y |xi)] = var(y)

I first order index: Si =
var(E[y |xi ])

var(y)



First order Sobol’ indices

I first order index: Si =
var(E[y |xi ])

var(y) , i = 1, . . . ,p

I 0 ≤ Si ≤ 1, i = 1, . . . ,p
I Si "close" to 1⇒ xi important
I Si "small" 6⇒ xi is not important



Total Sobol’ indices

Using again (F) but with x∼i instead of xi

var(E[y |x∼i ]) + E[var(y |x∼i)] = var(y)

and thus

var(y)− var(E[y |x∼i ])︸ ︷︷ ︸
remaining variance if x∼i were known

= E[var(y |x∼i)]

I total index: STi =
E[var(y |x∼i )]

var(y) = 1− var(E[y |x∼i ])
var(y)



STi = 0⇔ xi non-important

⇐:

xi non-import. ⇒ var(y |x∼i) = 0⇒ E[var(y |x∼i)] = 0⇒ STi = 0

⇒:

STi = 0⇒ E[var(y |x∼i)] = 0 ⇒
var≥0

var(y |x∼i) = 0⇒

xi not important



ANOVA (Reader’s Digest version)

I assume xi , iid, xi ∼ U(0,1)
I split x = (xi , x∼i) and decompose f as

f (x) = f0 + f1(xi) + f2(x∼i) + f12(xi , x∼i)

where
I f0 =

∫
f (x)dx ,

I f1(xi) =
∫
(f − f0)dx∼i , f2(x∼i) =

∫
(f − f0)dxi

I f12 = remainder

I above functions have zero average⇒⊥⇒

var(y) =

∫
(f (x)− f0)2 dx =

∫
f (x)2 dx − f 2

0

=

∫
f 2
1 dx︸ ︷︷ ︸

var(f1)

+

∫
f 2
2 dx︸ ︷︷ ︸

var(f2)

+

∫
f 2
12 dx︸ ︷︷ ︸

var(f12)



another way to look at things

Sobol’ indices can equivalently be defined as

Si =
var(f1)
var(y)

, STi =
varTi

var(y)

where

varTi = var(f1) + var(f12) = total variance corresponding to xi

exercise:
varTi =

1
2

∫∫
(f (x)− f (x ′))2 dx dx ′i

where x ′ = (x1, . . . , xi−1, x ′i , xi+1, . . . , xp).



another way to look at things

Sobol’ indices can equivalently be defined as

Si =
var(f1)
var(y)

, STi =
varTi

var(y)

where

varTi = var(f1) + var(f12) = total variance corresponding to xi

exercise:

varTi =
1
2

∫∫
(

∂f
∂xi

(x̂)(xi−x ′i )︷ ︸︸ ︷
f (x)− f (x ′))2 dx dx ′i

where x ′ = (x1, . . . , xi−1, x ′i , xi+1, . . . , xp).



back to the "calculus approach"

previous exercise⇒ one can show (Sobol’, Kucherenko, 2009)

STi ≤
1

π2 var(y)

∫ (
∂f
∂xi

)2

dx︸ ︷︷ ︸
νi

I νi is another importance measure
I νi is derivative based rather than variance based
I νi may be simpler to compute than STi if ∂xi f is available
I if not, more approximations have to be considered
I parameter distributions are needed for both Sobol’ and

DGSMs (derivative based global sensitivity measures)



how to actually compute all this?

I lots of integrals of the type
∫

g(x)dx1 . . . dxp

I problems with 100’s of parameters are the rule in practice,
not the exception

I functions with 100’s of variables that can be integrated
through calculus are (really) the exception, not the rule

I ⇒ calculus is hopeless
I standard quadratures that work in dimension 2 or 3 are

WAY too expensive in a high dimensional setting
I we need something else!



Monte Carlo integration

I X ∼ U(0,1)
I key observation

I =
∫ 1

0
g(x)dx can be regarded as E[g(X )] =

∫ 1

0
g(x)dx

I estimator:

IN =
1
N

N∑
i=1

g(Xi)

where the Xi ’s, i = 1, . . . ,N are N iid U(0,1) RVs
I realizations of IN are sample means of g(X )

1
N

N∑
i=1

g(xi)



Monte Carlo: analysis

I estimates from IN are exact on average:

E[IN ] =
∫ 1

0

1
N

N∑
i=1

g(x)dx =

∫ 1

0
g(x)dx = I

I in what sense/how fast do realizations of IN converge to I?
I var(IN) = var( 1

N
∑N

i=1 g(Xi)) =
1

N2 var(
∑N

i=1 g(Xi))

= 1
N2

∑N
i=1 var(g(Xi)) =

V
N

where V = var(g(X )) =
∫ 1

0 g2(x)dx − I2

I Chebyshev inequality⇒ P
(
|IN − I| > δ√

N

)
≤ V

δ2 , ∀δ > 0
in other words:

IN
P→ I at rate O(N−1/2)



Monte Carlo: analysis (II)

I central limit theorem gives "error estimate"

IN − I ≈
√
V
N
N

where N is a N(0,1) RV
I slow rate O(N−1/2) but does not depend on dimension p
I various techniques can be used to speed up convergence

I variance reduction
I quasi Monte Carlo, etc...



additional challenges

I the parameters may be correlated
I the quantity of interest may be a vector rather than a scalar

(see afternoon session) or a function ...
I f itself may be stochastic
I usually, parameter distributions are unknown (robustness?)
I sampling may be very expensive and/or the dimension

very high⇒ metamodels/surrogates



surrogates

I a surrogate f̂ approximates: f ≈ f in some sense
I f̂ is typically built from a "few" samples of f
I f̂ is (much) cheaper to evaluate than f
I if µ(f ) is some importance measure of f , we hope

µ(f̂ ) ≈ µ(f )

the above may be true for poor approximations of f (lots of
work to be done here!)



example of surrogates

I linear regression: fit the following model to data

f ≈ β0 + β1x1 + · · ·+ βpxp

f̂ can be the right hand side or only variables with
"significant" βi ’s can be retained (screening)

I regression trees/forests, MARS
I Gaussian processes
I Polynomial Chaos Expansion
I and many more...



tutorial summary

I variance based methods work well but may be expensive
I derivative based methods (or elementary effects) tend to

be cheaper
I (some) surrogate models can be used for dimension

reduction
I sometimes, simple models (linear regression) work

shockingly well!
I sometimes, they don’t...
I our quantity of interest y is usually not directly what comes

out of a "disciplinary solver" but depends on it
I ignoring correlations may be disastrous
I taking correlations into account is hard
I there is much to do: join us!


