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Illustration:	

Potential	energy	V	depending	on	position	x.	
Kinetic	energy	T	depending	on	momentum	p.	
The	Hamiltonian	equations	determine	the	dynamics	of	the	system.	
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Illustration:	

The	log	posterior	probability	corresponds	to	the	potential	energy	
V,	the	model	parameters	correspond	to	the	positions	x.	
The	momentum	variables	p,	which	determine	the	kinetic	energy	T,	
get	discarded	after	the	numerical	integration.		
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Starting	position	
	
Numerically	integrate	the	
Hamiltonian	equations	
over	L	steps.	
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Starting	position	
	
Numerically	integrate	the	
Hamiltonian	equations	
over	L	steps.	
	
Correct	for	finite	step-size	
numerical	integration	
errors	with	a	Metropolis-
Hastings	acceptance/
rejection	step.	

Log	posterior	contour	plot	
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Simulation	versus	Emulation	

Numerical	integration	of	the	
Hamiltonian	equations	on	the	

emulated	log	posterior		

Metropolis-Hastings	bias	
correction	using	the	true	log	

posterior	probability			
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Numerical	integration	step	size	
λ	

Number	of	numerical	integration	steps	
L	

Too	small:	
Excessive	computational		

costs	

Too	large:	
High	rejection	rate	

Too	small:	
Random	walk	behaviour	

Too	large:	
Small	sample	size	
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Use	Bayesian	optimization	to	optimize	
the	ESS	per	computational	time	



We	combine	both	ideas	and	use	
emulation	twice	



Emulation	of	the	
HMC	objective	

function	as	part	of	
Bayesian	

optimization	

Emulation	of	the	
log	likelihood	for	

faster	HMC	

We	combine	both	ideas	and	use	
emulation	twice	
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Posterior	correlations	



Computational	complexity	
	

•  Standard	MCMC:	
				3	weeks	
	
•  HMC	combined	with	emulation	and	BO:	
				2	days	

Target:	ESS=	1500	
PSRF	<=	1.1	

	



Computer	tutorial	



Exercise	1:	Bayesian	optimization	



Iteration	4	

 [ℓ, 𝜎↓𝑓 ] = [0.0389 , 
0.8615]	
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Exercise	2:	Bayesian	optimization	
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Exercise	2:	Bayesian	optimization	



Exercise	3	
Hamiltonian	Monte	Carlo	

Standard		
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