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SIR	
  Model	
  for	
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  Infec&on	
  
Compartmental	
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  Recovereds	
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of transmission within families, or other transmission experiments. Such data,
however, are often unavailable during the early stages of a disease outbreak.

An alternative approach involves fitting a mathematical model to outbreak data,
obtaining estimates for the parameters of the model, allowing R0 to be calculated.
The simplest model that can be used for this purpose is the standard deterministic
compartmental SIR model [see, for example, 11]. Individuals are assumed to either
be susceptible, infectious or removed, with the numbers of each being written as
S, I , and R, respectively. Susceptible individuals acquire infection through con-
tacts with infectious individuals, and the simplest form of the model assumes that
new infections arise at rate βSI/N . Here N is the population size and β is the
transmission parameter, which is given by the product of the contact rate and the
transmission probability. Recovery of infectives is assumed to occur at a constant
rate γ , corresponding to an average duration of infection of 1/γ , and leads to per-
manent immunity. Throughout this chapter we shall denote the average duration of
infectiousness by DI and assume permanent immunity following infection. We shall
also ignore demographic processes (births and deaths), which is a good approxi-
mation if the disease outbreak is short-lived and the infection is non-fatal. Ignoring
demography leads to the population size N being constant. The model can be written
as the following set of differential equations

dS/dt = −βSI/N (1)

dI/dt = βSI/N − γ I (2)

dR/dt = γ I. (3)

During the early stages of an outbreak with a novel pathogen, almost the entire
population will be susceptible, and, since S ≈ N , the transmission rate equals
β I . The transmission parameter β is the rate at which each infective gives rise
to secondary infections and so the basic reproductive number can be written as
R0 = βDI = β/γ . During this initial period, the changing prevalence of infec-
tion can, to a very good approximation, be described by the single linear equation
d I/dt = γ (R0 − 1)I. (We remark that the S = N assumption corresponds to
linearizing the model about its infection free equilibrium.) In other words, provided
that R0 is greater than one, which we shall assume to be the case throughout this
chapter, prevalence initially increases exponentially with growth rate

r = γ (R0 − 1). (4)

The incidence of infection is given by βSI/N and so, during the early stages of
an outbreak, prevalence and incidence are proportional in the SIR setting, so this
equation also describes the rate at which incidence grows.

Equation (4) provides a relationship, R0 = 1 + r DI, between R0 and quan-
tities that can typically be measured (the initial growth rate of the epidemic and
the average duration of infection), and as a result has provided one of the most
straightforward ways to estimate R0.

y0 1

Figure 6: Direction field for the SI model. The arrows show the direction in which y moves: y will
increase if it lies between 0 and 1.

6 Describing Recovery from Infection and Disease Outbreaks: The

SIR Model in a Closed Population

Typically, people do not remain infectious: they recover or die. We can model this by including a
‘removed’ class in the model, leading to an SIR model.

IS R
infection recovery

Figure 7: Flowchart showing movement between classes in the SIR model.

We have to describe the I to R transition in some way. The simplest assumption takes the recovery
(removal) term to be proportional to the number of infective individuals:

Ṡ = ��SI/N (15)

İ = �SI/N � �I (16)

Ṙ = �I. (17)

Again, we consider a closed population, so S + I + R = N . We usually consider the initial number
of susceptibles to be close to N .

This model is often called the Kermack and McKendrick model as it appeared in their 1927 paper.
It is also called the general epidemic model. (Although this SIR model is often called THE
Kermack and McKendrick model, it has been pointed out that the 1927 paper goes beyond this
model, discussing a more general framework that employs fewer assumptions.)

It’s worth pausing to think about the assumption made regarding the recovery term. Having a
constant recovery rate means that the distribution of infectious periods is exponential with mean
1/�. Biologically, this assumption corresponds to the chance of recovery being independent of
the time since infection. In most cases this is far from realistic, but it considerably simplifies the
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  Importance	
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EPIDEMIOLOGY

Influenza in a boarding school
Thefollowing notes are compiled by the Communi-
cable Disease Surveillance Centre (Public Health
Laboratory Service) and the Communicable
Diseases (Scotland) Unit from reports submitted
by microbiological laboratories, community
physicians, and environmental health officers.

During January an epidemic of influenza
occurred in a boarding school in the north of
England. A total of 763 boys between the ages
of 10 and 18 were at risk, all except 30 being
full boarders; the staff were from the surround-
ing villages. There were 113 boys between the
ages of 10 and 13 in the junior house, while
the rest were divided into 10 houses of about
60 boys each.
The Easter term began on 10 January, with

boys returning from all over Britain and some
from Europe and the Far East. One boy from
Hong Kong had a transient febrile illness
from 15 to 18 January. On Sunday 22 January
three boys were in the college infirmary. The
graph shows the daily total number confined
to bed or convalescent during the epidemic:
512 boys (67° 0) spent between three and seven
days away from class, and 83 of the boys in
the junior house were affected. Of about 130
adults who had some contact with the boys,
only one, a house matron, developed similar
symptoms.
Most of the boys who became ill first com-

plained of feeling very tired, with headache as
fever developed, and sore throat and tracheitis
being the rule. The temperature was usually
100--102'F (38° -39-C) and often higher in the
morning. Three boys with no other abnormal
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signs on chest ex;
sided quickly once
bed. They were
their temperatures
back to classes two
on the severity of t
off sick was five to
One boy of 13

days with probable
a temperature of
1 10/min, respiratic

- Confined to bed sounds in his right lung. He was given
.-0----o Convalescent ampicillin and by next morning his tempera-

ture was 99° F (37° C) and his chest clear. Five
days later he went home to convalesce. Four
boys developed wheezy bronchitis. Two
received ampicillin and two tetracycline. All
recovered quickly and were back at work in
seven to eight days. Four boys with otitis

| media, with bulging red ear drums, responded
to ampicillin within 48 hours and none had
any aural discharge. One boy had sinusitis,
which again responded to ampicillin. He was
in bed for seven days and off work for ten days.
In all, only 10 of the 512 boys who became ill
received antibiotics.

Throat swabs were taken from eight boys,
and influenza A viruses similar to A/USSR/90/

01. 0 77 (HlN1) were isolated from six. The spread
'26 ' 28' - l '3 - of this virus through the school was much

Februo3ry more rapid than in the outbreaks due to in-
fluenza B in November 1954 and to influenza A

atures of 1050-106° F (40° - (Asian flu) H2N2 in October 1957. These two
d mild reddening of the epidemics reached their peak in two weeks and
the fauces, but the throat lasted four weeks. This year's epidemic
nflamed as symptoms sug- reached a peak in seven days and was over in
e boys were there abnormal 13 days. Influenza vaccine (Fluvirin) had been
amination. Symptoms sub- given to 630 boys in October 1977-as had
the boys were confined to been the practice for some years. The inci-

allowed up 36 hours after dence of influenza among the boys had been
had returned to normal and low except in those years in which a definite
to four days later, depending antigenic shift occurred. The fact that this is
the attack. The average time the first major outbreak of influenza at the
six days. school since the Asian flu suggests that in-
was readmitted after two fluenza vaccination has a useful role in a board-

e bacterial pneumonia, with ing school. Had it been possible to include the
104° F (40° C), pulse rate of HlNl strain in the vaccine a major outbreak
n rate of 22/min, and moist might well have been avoided.

PARLIAMENT

Abortion (Amendment) Bill
Sir Bernard Braine introduced a Bill on

21 February "to make further provision with
respect to the protection of the life of a viable
fetus; to amend section 4 of the Abortion Act
1967; to regulate the provision of payment for
consultation and advice in relation to the
termination of pregnancy; and to make pro-
vision with respect to bodies corporate." He
emphasised that the Bill was limited solely to
three important matters of principle and would
not interfere "in any way with the criteria for
lawful abortion laid down in the 1967 Act."
The first change he wanted was to reduce the
upper limit for an abortion from 28 to 20
weeks. The BMA, the Peel Advisory Group,
Sir Stanley Clayton (when president of the
RCOG), and a poll among gynaecologists had
all favoured a 20-week limit or less.
The Bill's second purpose was to strengthen

and clarify the provision in section 4 of the
1967 Act regarding conscientious objection to
taking part in an abortion by giving statutory
clarification of the grounds on which objec-
tion could be based. The third change would
require all pregnancy advisory bureaux which
charged fees to be licensed by the Secretary of
State, as proposed by the Lane Committee.

A condition of licensing would be that the
bureaux should have no financial connection
with abortion clinics. Sir Bernard admitted
that without the Government's help the Bill
was unlikely to make progress.

Opposition to Bill

Sir George Sinclair opposed the Bill be-
cause, he said, "it would pave the way for a
Bill to restrict the operation of the 1967 Act,
and because it is in the teeth of the medical
profession." It was only in the most excep-
tional cases that abortion after 20 weeks was
sanctioned. Furthermore, "until, in certain
areas, the restrictions under the NHS are
removed, and with them the risk of delay, it
would, in my view, be too soon to change the
existing time limit." But, most importantly,
to disrupt the services of the British Pregnancy
Advisory Service and the Pregnancy Advisory
Service in London, which the Bill sought to
do, would "once again drive women ... to back
street abortions." Half of all abortions were
still carried out in the private sector. The
BMA, Sir George said, had voted against any
amendment to the 1967 Act at its 1977 ARM.
"I hope," he concluded, "that in view of the
medical opinion and the need of women in
distress, the motion will be given very little
support."
The Bill was given a first reading by 181

votes to 175.

Medical Bill
The Medical Bill was considered by a

second reading committee in the House of
Commons on 22 February. The Minister of
State, Mr Roland Moyle, explained the Bill
clause by clause and told the committee of the
amendments which had been made in the
House of Lords (4 February, p 311). "The
Bill," he said, "is no longer a short first-stage
measure. It is considerably longer than it was
on its original introduction. The reason is that
a consensus on the additional provisions has
developed more rapidly than at one time was
thought possible, and we want to meet that
consensus in full. I hope that, during its
passage through the House, the Government
and the committee will be able to make the
Bill even more comprehensive." The only
outstanding issue, which had been covered in
the Merrison Report, was the question of
specialist registration.
During the debate in the committee the size

and cost of the new council were raised. Mr
Moyle pointed out that the figure of 98 did not
appear anywhere in the Bill, though he con-
ceded that the council would be considerably
enlarged. On the question of cost, he said
"there has been no decision in principle about
how the future costs of the new General
Medical Council are to be met."
The committee recommended that the Bill

should be read a second time and the House
gave the Bill a second reading on 23 February.
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appear anywhere in the Bill, though he con-
ceded that the council would be considerably
enlarged. On the question of cost, he said
"there has been no decision in principle about
how the future costs of the new General
Medical Council are to be met."
The committee recommended that the Bill

should be read a second time and the House
gave the Bill a second reading on 23 February.



Fiing	
  the	
  SIR	
  Model	
  to	
  Data	
  
We	
  shall	
  take	
  the	
  “confined	
  to	
  bed”	
  &me	
  series	
  
and	
  view	
  it	
  as	
  the	
  observed	
  trajectory	
  of	
  I	
  (t)	
  
	
  
14	
  data	
  points,	
  but	
  we	
  shall	
  imagine	
  that	
  the	
  first	
  
one	
  provides	
  us	
  with	
  the	
  true	
  ini&al	
  condi&on,	
  leaving	
  
us	
  with	
  13	
  data	
  points	
  

	
   	
   	
   	
   	
  N	
  =	
  763,	
  S(0)	
  =	
  760,	
  I(0)	
  =	
  3	
  
	
  	
  

Seek	
  the	
  values	
  of	
  β	
  and	
  γ	
  that	
  provide	
  the	
  
“best	
  fit”	
  to	
  the	
  data	
  
	
  
	
  
“Best	
  fit”	
  in	
  the	
  sense	
  of	
  minimizing	
  the	
  sum	
  of	
  the	
  squared	
  errors	
  	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  (“error	
  sum	
  of	
  squares”): 	
  	
  
	
  
	
  

587BRITISH MEDICAL JOURNAL 4 MARCH 1978

EPIDEMIOLOGY

Influenza in a boarding school
Thefollowing notes are compiled by the Communi-
cable Disease Surveillance Centre (Public Health
Laboratory Service) and the Communicable
Diseases (Scotland) Unit from reports submitted
by microbiological laboratories, community
physicians, and environmental health officers.

During January an epidemic of influenza
occurred in a boarding school in the north of
England. A total of 763 boys between the ages
of 10 and 18 were at risk, all except 30 being
full boarders; the staff were from the surround-
ing villages. There were 113 boys between the
ages of 10 and 13 in the junior house, while
the rest were divided into 10 houses of about
60 boys each.
The Easter term began on 10 January, with

boys returning from all over Britain and some
from Europe and the Far East. One boy from
Hong Kong had a transient febrile illness
from 15 to 18 January. On Sunday 22 January
three boys were in the college infirmary. The
graph shows the daily total number confined
to bed or convalescent during the epidemic:
512 boys (67° 0) spent between three and seven
days away from class, and 83 of the boys in
the junior house were affected. Of about 130
adults who had some contact with the boys,
only one, a house matron, developed similar
symptoms.
Most of the boys who became ill first com-

plained of feeling very tired, with headache as
fever developed, and sore throat and tracheitis
being the rule. The temperature was usually
100--102'F (38° -39-C) and often higher in the
morning. Three boys with no other abnormal
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their temperatures
back to classes two
on the severity of t
off sick was five to
One boy of 13

days with probable
a temperature of
1 10/min, respiratic

- Confined to bed sounds in his right lung. He was given
.-0----o Convalescent ampicillin and by next morning his tempera-

ture was 99° F (37° C) and his chest clear. Five
days later he went home to convalesce. Four
boys developed wheezy bronchitis. Two
received ampicillin and two tetracycline. All
recovered quickly and were back at work in
seven to eight days. Four boys with otitis

| media, with bulging red ear drums, responded
to ampicillin within 48 hours and none had
any aural discharge. One boy had sinusitis,
which again responded to ampicillin. He was
in bed for seven days and off work for ten days.
In all, only 10 of the 512 boys who became ill
received antibiotics.

Throat swabs were taken from eight boys,
and influenza A viruses similar to A/USSR/90/

01. 0 77 (HlN1) were isolated from six. The spread
'26 ' 28' - l '3 - of this virus through the school was much

Februo3ry more rapid than in the outbreaks due to in-
fluenza B in November 1954 and to influenza A

atures of 1050-106° F (40° - (Asian flu) H2N2 in October 1957. These two
d mild reddening of the epidemics reached their peak in two weeks and
the fauces, but the throat lasted four weeks. This year's epidemic
nflamed as symptoms sug- reached a peak in seven days and was over in
e boys were there abnormal 13 days. Influenza vaccine (Fluvirin) had been
amination. Symptoms sub- given to 630 boys in October 1977-as had
the boys were confined to been the practice for some years. The inci-

allowed up 36 hours after dence of influenza among the boys had been
had returned to normal and low except in those years in which a definite
to four days later, depending antigenic shift occurred. The fact that this is
the attack. The average time the first major outbreak of influenza at the
six days. school since the Asian flu suggests that in-
was readmitted after two fluenza vaccination has a useful role in a board-

e bacterial pneumonia, with ing school. Had it been possible to include the
104° F (40° C), pulse rate of HlNl strain in the vaccine a major outbreak
n rate of 22/min, and moist might well have been avoided.

PARLIAMENT

Abortion (Amendment) Bill
Sir Bernard Braine introduced a Bill on

21 February "to make further provision with
respect to the protection of the life of a viable
fetus; to amend section 4 of the Abortion Act
1967; to regulate the provision of payment for
consultation and advice in relation to the
termination of pregnancy; and to make pro-
vision with respect to bodies corporate." He
emphasised that the Bill was limited solely to
three important matters of principle and would
not interfere "in any way with the criteria for
lawful abortion laid down in the 1967 Act."
The first change he wanted was to reduce the
upper limit for an abortion from 28 to 20
weeks. The BMA, the Peel Advisory Group,
Sir Stanley Clayton (when president of the
RCOG), and a poll among gynaecologists had
all favoured a 20-week limit or less.
The Bill's second purpose was to strengthen

and clarify the provision in section 4 of the
1967 Act regarding conscientious objection to
taking part in an abortion by giving statutory
clarification of the grounds on which objec-
tion could be based. The third change would
require all pregnancy advisory bureaux which
charged fees to be licensed by the Secretary of
State, as proposed by the Lane Committee.

A condition of licensing would be that the
bureaux should have no financial connection
with abortion clinics. Sir Bernard admitted
that without the Government's help the Bill
was unlikely to make progress.

Opposition to Bill

Sir George Sinclair opposed the Bill be-
cause, he said, "it would pave the way for a
Bill to restrict the operation of the 1967 Act,
and because it is in the teeth of the medical
profession." It was only in the most excep-
tional cases that abortion after 20 weeks was
sanctioned. Furthermore, "until, in certain
areas, the restrictions under the NHS are
removed, and with them the risk of delay, it
would, in my view, be too soon to change the
existing time limit." But, most importantly,
to disrupt the services of the British Pregnancy
Advisory Service and the Pregnancy Advisory
Service in London, which the Bill sought to
do, would "once again drive women ... to back
street abortions." Half of all abortions were
still carried out in the private sector. The
BMA, Sir George said, had voted against any
amendment to the 1967 Act at its 1977 ARM.
"I hope," he concluded, "that in view of the
medical opinion and the need of women in
distress, the motion will be given very little
support."
The Bill was given a first reading by 181

votes to 175.

Medical Bill
The Medical Bill was considered by a

second reading committee in the House of
Commons on 22 February. The Minister of
State, Mr Roland Moyle, explained the Bill
clause by clause and told the committee of the
amendments which had been made in the
House of Lords (4 February, p 311). "The
Bill," he said, "is no longer a short first-stage
measure. It is considerably longer than it was
on its original introduction. The reason is that
a consensus on the additional provisions has
developed more rapidly than at one time was
thought possible, and we want to meet that
consensus in full. I hope that, during its
passage through the House, the Government
and the committee will be able to make the
Bill even more comprehensive." The only
outstanding issue, which had been covered in
the Merrison Report, was the question of
specialist registration.
During the debate in the committee the size

and cost of the new council were raised. Mr
Moyle pointed out that the figure of 98 did not
appear anywhere in the Bill, though he con-
ceded that the council would be considerably
enlarged. On the question of cost, he said
"there has been no decision in principle about
how the future costs of the new General
Medical Council are to be met."
The committee recommended that the Bill

should be read a second time and the House
gave the Bill a second reading on 23 February.
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Quick	
  Start…	
  If	
  You	
  Have	
  Already	
  Used	
  MATLAB	
  to	
  do	
  
Least	
  Squares	
  Fiing	
  

1.	
  Write	
  a	
  func&on	
  that	
  simulates	
  SIR	
  model	
  
2.	
  Write	
  a	
  func&on	
  that	
  takes	
  a	
  vector	
  pars=[beta, gamma]	
  as	
  input,	
  
simulates	
  model	
  for	
  this	
  pair	
  of	
  parameters,	
  compares	
  to	
  data	
  and	
  returns	
  error	
  
sum	
  of	
  squares	
  	
  (see	
  notes	
  on	
  slide	
  20)	
  
3.	
  Minimize	
  this	
  func&on	
  to	
  find	
  best-­‐fiing	
  values	
  of	
  beta	
  and	
  gamma	
  	
  

	
   	
  (slides	
  23-­‐27)	
  
4.	
  Derive	
  sensi&vity	
  equa&ons	
  (slides	
  16,17),	
  implement	
  them	
  in	
  MATLAB	
  (slide	
  
18)	
  and	
  explore	
  their	
  behavior	
  (see	
  notes	
  on	
  slide	
  19)	
  
5.	
  Use	
  sensi&vity	
  equa&ons	
  with	
  asympto&c	
  sta&s&cal	
  theory	
  to	
  obtain	
  es&mates	
  
of	
  uncertainty	
  in	
  es&mated	
  parameters	
  (slides	
  28,29)	
  



SIR	
  Model	
  :	
  Forward	
  Simula&on	
  
Nonlinearity	
  of	
  the	
  transmission	
  term	
  means	
  we	
  cannot	
  find	
  an	
  analy&c	
  solu&on	
  
of	
  the	
  model	
  for	
  S	
  and	
  I	
  in	
  terms	
  of	
  &me	
  
	
  
Numerically	
  integrate	
  (simulate)	
  model	
  in	
  MATLAB,	
  given	
  a	
  set	
  of	
  parameters	
  and	
  
ini&al	
  values	
  for	
  S	
  and	
  I	
  
	
  
We	
  shall	
  use	
  the	
  	
  ode45	
  	
  rou&ne	
  in	
  MATLAB	
  
	
  
MATLAB	
  works	
  with	
  vectors,	
  so	
  we	
  shall	
  use	
  the	
  first	
  element	
  (e.g.	
  y(1)	
  )	
  to	
  
denote	
  S	
  and	
  the	
  second	
  (e.g.	
  y(2)	
  )	
  to	
  denote	
  I	
  	
  	
  
	
  

	
  



ode45!
[t,y]=ode45(@odefun,tspan,y0,options,pars);	
  

odefun	
  	
  	
  the	
  name	
  of	
  the	
  func&on	
  that	
  gives	
  the	
  right	
  sides	
  of	
  our	
  differen&al	
  equa&ons	
  	
  	
  	
  
	
   	
   	
   	
   	
  (replace	
  “odefun”	
  with	
  something	
  more	
  descrip&ve,	
  but	
  keep	
  “@”)	
  

tspan 	
  vector	
  that	
  specifies	
  the	
  interval	
  of	
  &mes	
  over	
  which	
  to	
  integrate:	
  	
  
	
   	
   	
   	
   	
   	
   	
   	
  tspan = [t_initial, t_final]	
  	
  
	
   	
  or	
  a	
  vector	
  of	
  &mes	
  at	
  which	
  we	
  wish	
  to	
  obtain	
  output	
  :	
  	
  
	
   	
   	
   	
  tspan = [t_initial, t1, t2, … , t_final]!

y0	
  	
   	
   	
  column	
  vector	
  of	
  ini&al	
  states	
  (i.e.	
  ini&al	
  condi&ons)	
  :	
  	
  	
  	
  	
  	
  	
  y0 = [ S0 ; I0 ]!

options 	
  op&ons	
  for	
  the	
  ODE	
  solver,	
  e.g.	
  solu&on	
  tolerances	
  
	
   	
   	
  use	
  []	
  for	
  no	
  op&ons;	
  see	
  odeset	
  for	
  informa&on	
  on	
  op&ons	
  

pars 	
  a	
  vector	
  of	
  parameter	
  values	
  that	
  gets	
  passed	
  to	
  odefun!

t 	
   	
  (returned)	
  column	
  vector	
  of	
  &mes	
  at	
  which	
  output	
  is	
  given	
  

y 	
   	
  (returned)	
  matrix	
  of	
  numerically	
  calculated	
  values	
  of	
  state	
  variables	
  over	
  &me	
  
	
  
	
   	
   	
  each	
  row	
  refers	
  to	
  a	
  different	
  &me	
  point,	
  	
  each	
  column	
  to	
  a	
  different	
  state	
  variable	
  	
  	
  	
  	
  

	
   	
  e.g.	
  y(1,:)	
  are	
  ini&al	
  states,	
  	
  	
  	
  	
  y(end,:)	
  final	
  states,	
  
	
   	
  	
  	
  y(:,2)	
  is	
  a	
  column	
  vector	
  of	
  I	
  values	
  at	
  all	
  &mes	
  —	
  this	
  is	
  what	
  we	
  want	
  to	
  make	
  an	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  I(t)	
  vs	
  t	
  plot	
  



odefun!
function f = odefun(t,y,pars)!

Func&on	
  odefun	
  returns	
  the	
  entries	
  of	
  the	
  right	
  sides	
  of	
  the	
  differen&al	
  equa&ons,	
  f	
  (t,y),	
  as	
  a	
  column	
  
vector	
  

t	
   	
   	
  	
   	
  (scalar)	
  value	
  of	
  &me	
  at	
  which	
  to	
  evaluate	
  f	
  

y 	
   	
   	
  column	
  vector	
  containing	
  values	
  of	
  state	
  variables	
  

pars 	
   	
  a	
  vector	
  of	
  parameter	
  values	
  that	
  gets	
  passed	
  to	
  odefun  
	
  

!function f = sir_rhs(t,y,pars)  
 

! !f=zeros(2,1); ! ! ! ! ! !  need	
  to	
  return	
  a	
  column	
  vector 
! ! ! ! 
! !beta=pars(1);  
! !gamma=pars(2);  
! !N=pars(3);! ! ! ! ! ! !  could	
  eliminate	
  a	
  number	
  of	
  these 

 ! ! ! ! ! ! ! ! ! ! !  lines	
  if	
  we	
  worked	
  with	
  y(1),	
  pars(1) 
! !S=y(1);! ! ! ! ! 	
   	
   	
  	
  	
  	
  	
  	
  etc	
  in	
  the	
  f(1)	
  and	
  f(2)	
  lines 
! !I=y(2);  

 
! !f(1)=-beta*S*I/N;  
! !f(2)=beta*S*I/N-gamma*I;  
!end!



SIR	
  Model	
  Simula&on	
  
function sir_simulation  
 

!beta=1.0;  
!gamma=1.0/5.0;    % five day infectious period  
!N=1000.0;!

!pars=[beta,gamma,N];!

!tspan=[0,50];! ! % simulate for 50 days!

!y0=[999;1];       % one initial infective!

![t,y]=ode45(@sir_rhs,tspan,y0,[],pars);  
 

!plot(t,y(:,2));   % plot prevalence of infection over time  
 

end!

function f = sir_rhs(t,y,pars)  
!f=zeros(2,1);  
!f(1)=-pars(1)*y(1)*y(2)/pars(3);  
!f(2)=pars(1)*y(1)*y(2)/pars(3)-pars(2)*y(2);  

end!



Sensi&vity	
  Equa&ons	
  
Sensi&vi&es:	
  par&al	
  deriva&ves	
  of	
  state	
  variables	
  with	
  respect	
  to	
  parameters	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  e.g.	
  
	
  
For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  x	
  and	
  f	
  are	
  m	
  dimensional,	
  

	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  and	
  θ	
  is	
  a	
  p	
  dimensional	
  vector	
  of	
  parameters	
  
	
  
the	
  m	
  by	
  p	
  matrix	
  of	
  sensi&vi&es,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  sa&sfies	
  the	
  ODE	
  system	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
with	
  ini&al	
  condi&ons	
  	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

@I

@�
(t)

dx

dt

= f(x, t; ✓)

@x

@✓

(t)

@x

@✓

(0) = 0m⇥p

d

dt

@x

@✓

=
@f

@x

@x

@✓

+
@f

@✓



Sensi&vity	
  Equa&ons	
  
Sensi&vi&es:	
  par&al	
  deriva&ves	
  of	
  state	
  variables	
  with	
  respect	
  to	
  parameters	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  e.g.	
  
	
  
For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  where	
  x	
  and	
  f	
  are	
  m	
  dimensional,	
  

	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  and	
  θ	
  is	
  a	
  p	
  dimensional	
  vector	
  of	
  parameters	
  
	
  
the	
  m	
  by	
  p	
  matrix	
  of	
  sensi&vi&es,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  sa&sfies	
  the	
  ODE	
  system	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
with	
  ini&al	
  condi&ons	
  
	
  
	
  
Appendix	
  of	
  Capaldi	
  et	
  al.	
  (2012)	
  gives	
  	
  
sensi&vity	
  equa&ons	
  for	
  SIR	
  model	
  	
  	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

@I

@�
(t)

dx

dt

= f(x, t; ✓)

@x

@✓

(t)

@x

@✓

(0) = 0m⇥p

The	
  matrix	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  Jacobian	
  matrix	
  	
  
	
  
-­‐	
  differen&ate	
  RHS	
  of	
  ODE	
  w.r.t.	
  state	
  vars.	
  
	
  
	
   	
  is	
  deriva&ve	
  of	
  RHS	
  w.r.t.	
  params	
  
	
  
	
  
Banks’s	
  nota&on	
  :	
  	
  
	
  

@f

@x

@f

@✓

d

dt

@x

@✓

=
@f

@x

@x

@✓

+
@f

@✓

s(t) =
@x

@✓



Numerical	
  Implementa&on	
  of	
  Sensi&vity	
  Equa&ons	
  
Need	
  to	
  solve	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  together	
  with	
  	
  
	
  
In	
  total,	
  that’s	
  mp	
  +	
  m	
  equa&ons	
  
	
  
For	
  SIR	
  model	
  with	
  2	
  states	
  and	
  2	
  parameters	
  of	
  interest	
  :	
  	
  6	
  equa&ons/quan&&es	
  
to	
  track,	
  	
  arranged	
  as	
  a	
  column	
  vector	
  in	
  MATLAB,	
  with	
  entries	
  
	
  
	
  
	
  
	
  
Your	
  tasks:	
   	
  1.	
  Work	
  out	
  the	
  sensi&vity	
  equa&ons	
  for	
  the	
  SIR	
  model	
  

	
   	
   	
  2.	
  Code	
  up	
  the	
  sensi&vity	
  equa&ons	
  (together	
  with	
  the	
  2	
  of	
  the	
  	
  
	
   	
   	
   	
  original	
  SIR	
  model)	
  in	
  MATLAB	
  
	
   	
   	
   	
   	
   	
   	
  	
  

	
  
	
  
	
  
	
  
	
  
	
  

dx

dt

= f(x, t; ✓)
d

dt

@x

@✓

=
@f

@x

@x

@✓

+
@f

@✓

y(1)! y(2)! y(3)! y(4)! y(5)! y(6)!

S	
   I	
   ∂S/∂β	
  	
   ∂S/∂γ	
  	
   ∂I/∂β	
  	
   ∂I/∂γ	





Behavior	
  of	
  the	
  Sensi&vity	
  Equa&ons?	
  
Once	
  you	
  have	
  the	
  sensi&vity	
  equa&ons	
  running…	
  
Plot	
  curves	
  of	
  ∂I/∂β	
  and	
  ∂I/∂γ	
  on	
  the	
  same	
  graph	
  
	
  
Compare	
  their	
  shapes	
  in	
  the	
  following	
  situa&ons:	
  
1.	
  R0	
  just	
  above	
  one,	
  e.g.	
  R0	
  =	
  1.2	
  	
  (take	
  β=0.24,	
  γ=0.2,	
  integrate	
  for	
  300	
  &me	
  units)	
  
2.	
  Intermediate	
  R0	
  ,	
  e.g.	
  R0	
  =	
  5	
  	
  (take	
  β=1,	
  γ=0.2,	
  integrate	
  for	
  50	
  &me	
  units)	
  
3.	
  Large	
  R0	
  ,	
  e.g.	
  R0	
  =	
  12	
  	
  (take	
  β=2.4,	
  γ=0.2,	
  integrate	
  for	
  50	
  &me	
  units)	
  
	
  
Does	
  the	
  plot	
  in	
  case	
  (1)	
  say	
  something	
  interes&ng	
  about	
  our	
  ability	
  to	
  separately	
  
es&mate	
  β	
  and	
  γ?	
  
	
  
	
  

	
   	
   	
   	
   	
   	
   	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  



Fiing	
  the	
  SIR	
  Model	
  to	
  Data	
  
Two	
  steps:	
  
1.  Create	
  func&on	
  that	
  calculates	
  error	
  sum	
  of	
  squares	
  given	
  values	
  of	
  β	
  and	
  γ	


2.  Find	
  values	
  of	
  β	
  and	
  γ	
  that	
  minimize	
  this	
  func&on	
  
	
  
Step	
  1	
  is	
  a	
  simple	
  modifica&on	
  of	
  the	
  code	
  already	
  created	
  to	
  simulate	
  the	
  SIR	
  model	
  
	
  
function ESS = error_sum_of_squares(input_pars)  

!beta=input_pars(1);  
!gamma=input_pars(2);  

 
!tspan=[0:13];	
  	
  	
  	
  	
  	
  	
   	
  %	
  this	
  vector	
  has	
  entries	
  0,	
  1,	
  2,	
  …	
  ,	
  12,	
  13	
  ,	
  	
  
	
   	
   	
   	
   	
   	
  %	
  so	
  we	
  get	
  output	
  for	
  each	
  day	
  

	
  	
  	
   	
  data=[3;6;25;73;222;294;258;237;191;125;69;27;11;4];  
 

!N=763;  
!y0=[760 ; 3];  
![t,y]=ode45(@sir_rhs,tspan,y0,[],[beta,gamma,N]);  

 
	
  diff=data-y(:,2);	
  	
  	
  	
  	
  	
  	
  	
  	
  %	
  calculate	
  differences	
  between	
  data	
  and	
  predic&ons	
  
	
  ESS=sum(diff.^2);	
  	
  	
  	
  	
  	
  	
  	
  	
  %	
  square	
  entries	
  of	
  diff	
  (	
  .^2	
  operator)	
  and	
  then	
  sum	
  

end!
	
  
	
  
	
  



Fiing	
  the	
  SIR	
  Model	
  to	
  Data	
  
What	
  does	
  the	
  error	
  sum	
  of	
  squares	
  func&on	
  look	
  like?	
  
Because	
  it’s	
  a	
  func&on	
  of	
  two	
  variables,	
  it’s	
  rela&vely	
  easy	
  to	
  visualize,	
  e.g.	
  using	
  a	
  3D	
  
plot	
  or	
  a	
  contour	
  plot	
  
Might	
  be	
  interes&ng	
  to	
  look	
  at	
  this	
  before	
  doing	
  minimiza&on…	
  
	
  
beta_range=[1:0.05:3];!
gamma_range=[0.15:0.025:1];    !
 
% set up grid of values!
[GAMMA,BETA]=meshgrid(gamma_range,beta_range);!
    !
% calculate error sum of squares for each point on grid!
for i=1:numel(beta_range)!
       for j=1:numel(gamma_range)!
            ESS(i,j)=error_sum_of_squares([BETA(i,j),GAMMA(i,j)]);!
        end!
    end!
    !
 % do contour plot, with gamma on horizontal, beta on vertical!
 figure(1)!
 contour(GAMMA,BETA,ESS,20)!
	
  
	
  
	
  
	
  
	
  
	
  



Fiing	
  the	
  SIR	
  Model	
  to	
  Data	
  
What	
  does	
  the	
  error	
  sum	
  of	
  squares	
  func&on	
  look	
  like?	
  

Because	
  it’s	
  a	
  func&on	
  of	
  two	
  variables,	
  it’s	
  rela&vely	
  easy	
  to	
  visualize,	
  e.g.	
  using	
  a	
  
3D	
  plot	
  or	
  a	
  contour	
  plot	
  

Might	
  be	
  interes&ng	
  to	
  look	
  at	
  this	
  before	
  doing	
  minimiza&on…	
  

	
  

β	
  on	
  ver&cal	
  axis	
  

γ	
  on	
  horizontal	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  



Minimizing	
  a	
  Func&on:	
  fminsearch!
Op&miza&on	
  is	
  a	
  big	
  area,	
  with	
  lots	
  of	
  different	
  methods	
  that	
  could	
  be	
  used	
  
	
  
We	
  shall	
  use	
  MATLAB’s	
  fminsearch	
  ,	
  which	
  implements	
  the	
  Nelder-­‐Mead	
  direct	
  
search	
  simplex	
  algorithm	
  (Nelder	
  &	
  Mead,	
  1965;	
  see	
  also	
  Walters	
  et	
  al.	
  1991,	
  
Lagarias	
  et	
  al.	
  1998)	
  
	
  
	
  
Worth	
  keeping	
  in	
  mind	
  the	
  difficul&es	
  (i.e.	
  things	
  that	
  can	
  and	
  do	
  go	
  wrong)	
  with	
  
minimiza&on,	
  par&cularly	
  the	
  possibility	
  that	
  a	
  func&on	
  has	
  mul&ple	
  local	
  minima	
  
	
  
(Our	
  error	
  sum	
  of	
  squares	
  func&on	
  looks	
  nice,	
  so	
  we	
  wade	
  in	
  without	
  worrying	
  
too	
  much…)	
  
	
  
	
  
	
  
	
  
	
  
	
  



Minimizing	
  a	
  Func&on:	
  fminsearch!
[x,fval]=fminsearch(@func,x0,options,extra_pars)!
	
  
func(pars)	
  is	
  the	
  func&on	
  whose	
  value	
  is	
  to	
  be	
  minimized	
  	
  

	
   	
   	
   	
   	
   	
  (e.g.	
  our	
  error_sum_of_squares)	
  
	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  pars	
  is	
  a	
  p	
  dimensional	
  vector	
  	
  
x0	
   	
   	
   	
  ini&al	
  guess	
  for	
  the	
  p	
  dimensional	
  vector	
  of	
  parameters	
  
options	
   	
  contains	
  op&ons	
  for	
  op&miza&on	
  rou&ne	
  (e.g.	
  tolerances,	
   	
   	
  

	
   	
   	
  number	
  of	
  allowed	
  itera&ons	
  and/or	
  func&on	
  evalua&ons)	
  
	
   	
   	
  use	
  [	
  ]	
  if	
  we	
  want	
  to	
  use	
  defaults;	
  see	
  optimset	
  for	
  more	
  info	
  

extra_pars 	
  a	
  vector	
  of	
  other	
  (fixed)	
  parameters	
  we	
  may	
  wish	
  to	
  pass	
  
	
  
Returned	
  values:	
  
x 	
   	
   	
  vector	
  of	
  parameters	
  that	
  minimizes	
  func&on	
  
fval 	
   	
  value	
  of	
  func&on	
  at	
  returned	
  value	
  of	
  x	
  
	
  
	
  
	
  



Example	
  of	
  use	
  of	
  fminsearch!
function test_minimization  

!x0=[1,4];!
![x,fval]=fminsearch(@simple_function,x0)!
! ! !% as I don’t want to specify options or extra parameters!
! ! !% we can skip those arguments!

end!
!

function f = simple_function(pars)!
!a=pars(1);  
!b=pars(2);!
!f= 2*(a-2)^2+3*(b-3)^2;  
! !% embarrassingly simple function, whose minimum is at (2,3)!

end!
!!

	
  
	
  



Task:	
  Fit	
  SIR	
  Model	
  to	
  Data!
Use	
  fminsearch	
  on	
  your	
  error_sum_of_squares	
  func&on	
  to	
  find	
  the	
  	
  

	
   	
  best-­‐fiing	
  values	
  of β and	
  γ and	
  the	
  error	
  sum	
  of	
  squares	
  
	
  

	
   	
  Hint	
  for	
  ini&al	
  guess	
  at	
  parameters:	
  average	
  dura&on	
  of	
  influenza	
  	
  
	
   	
   	
  infec&on	
  is	
  about	
  4	
  days,	
  and	
  R0	
  might	
  be	
  in	
  the	
  ballpark	
  of	
  8	
  
	
   	
  alterna&vely:	
  did	
  you	
  get	
  any	
  idea	
  from	
  the	
  contour	
  plot?	
  

	
  
[theta_hat,ess]=fminsearch(@error_sum_of_squares,[1,0.2])!

	
  
	
   	
   	
  Plot	
  data	
  and	
  best	
  fiing	
  curve	
  on	
  the	
  same	
  graph	
  
	
  

	
   	
  What	
  is	
  our	
  best	
  guess	
  at	
  the	
  value	
  of	
  R0?	
  
	
  
	
  



Task:	
  Fit	
  SIR	
  Model	
  to	
  Data!
Plot	
  data	
  and	
  best	
  fiing	
  curve	
  on	
  the	
  same	
  graph:	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
What	
  about	
  uncertainty	
  in	
  our	
  es&mates	
  of	
  parameters?	
  Bring	
  the	
  sta&s&cal	
  
machinery	
  into	
  play…	
  



Uncertainty	
  Es&mates	
  for	
  Parameters!
Using	
  theory	
  from	
  this	
  morning’s	
  talk,	
  our	
  es&mate	
  of	
  the	
  variance-­‐covariance	
  
matrix	
  for	
  the	
  vector	
  of	
  es&mated	
  parameters	
  is	
  
	
  
	
  
	
  

	
  Here,	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  (minimized	
  value	
  of	
  error	
  sum	
  of	
  squares)	
  /	
  (n	
  –	
  p)	
  
	
   	
   	
  n	
  (13)	
  data	
  points,	
  p	
  (2)	
  es&mated	
  parameters	
  

	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  n	
  x	
  p	
  matrix	
  of	
  sensi&vi&es,	
  with	
  entries	
  	
  
	
  

	
   	
   	
   	
  Need	
  sensi&vi&es	
  of	
  I	
  with	
  respect	
  to	
  β	
  and	
  γ	
  at	
  each	
  &me	
  point	
  
	
  
Then:	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  

⌃ = �̂2
⇣
�(n)(✓̂)

T
�(n)(✓̂)

⌘�1

�̂2

�(n)(✓̂) �(n)(✓̂) i j =
@I(ti; ✓̂)

@✓j

cov(

ˆ�, �̂) = ⌃12SE(�̂) =
p
⌃11 SE(�̂) =

p
⌃22



Uncertainty	
  Es&mates	
  for	
  Parameters!
Task:	
  Calculate	
  standard	
  errors	
  for	
  es&mates	
  of	
  β	
  and	
  γ	
  	
  

	
   	
  and	
  corresponding	
  coefficients	
  of	
  varia&on	
  (	
  SE/es&mate)	
  
	
  

	
  	
  	
  	
  Calculate	
  correla&on	
  between	
  parameter	
  es&mates	
  using	
  
	
  
	
  
Qu.:	
  How	
  does	
  uncertainty	
  in	
  of	
  β	
  and	
  γ	
  translate	
  into	
  uncertainty	
  of	
  R0	
  =	
  β/γ ?	
  

	
  Non-­‐trivial…	
  	
  
	
  

	
  approximate	
  result:	
  
	
  

	
   	
   	
   	
   	
   	
   	
  here,	
  β0	
  and	
  γ0	
  are	
  our	
  es&mates	
  of	
  β	
  and	
  γ	



⇢ =

cov(

ˆ�, �̂)

SE(

ˆ�) SE(�̂)
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Standard errors for the components of the estimator ✓̂LS are approximated by
taking square roots of the diagonal entries of ⌃, while the o↵-diagonal entries pro-
vide approximations for the covariances between pairs of these components. The
uncertainty of an estimate of an individual parameter is conveniently discussed in
terms of the coe�cient of variation (CV), that is the standard error of an estimate
divided by the estimate itself. The dimensionless property of the CV allows for
easier comparison between uncertainties of di↵erent parameters. In a related fash-
ion, the covariances can be conveniently normalized to give correlation coe�cients,
defined by

⇢✓̂i,✓̂j
=

cov(✓̂i, ✓̂j)q
Var(✓̂i)Var(✓̂j)

. (16)

The asymptotic statistical theory provides uncertainties for individual parame-
ters, but not for compound quantities—such as the basic reproductive number—that
are often of interest. For instance, if we had the estimator ✓̂LS = (�̂, �̂)T , a simple
point estimate for R0 would be �/�, where � and � are the realized values of �̂
and �̂. To understand the properties of the corresponding estimator we examine
the expected value and variance of the estimator �̂/�̂. Because this quantity is the
ratio of two random variables, there is no simple exact form for its expected value
or variance in terms of the expected values and variances of the estimators �̂ and
�̂. Instead, we have to use approximation formulas derived using the method of
statistical di↵erentials (e↵ectively a second order Taylor series expansion, see [29]),
and obtain

E

 
�̂

�̂

!
⇡ �0

�0

 
1� cov(�̂, �̂)

�0�0
+

Var(�̂)

�

2
0

!
, (17)

and

Var

 
�̂

�̂

!
⇡
✓
�0

�0

◆2
 
Var(�̂)

�0
2 +

Var(�̂)

�0
2

� 2cov(�̂, �̂)

�0�0

!
. (18)

Here we have made use of the fact that E(�̂) = �0, the true value of the parameter,
and E(�̂) = �0.

The variance equation has previously been used in an epidemiological setting
by Chowell et al [13]. Equation (17), however, shows us that estimation of R0 by
dividing point estimates of � and � provides a biased estimate of R0. The bias factor
can be written in terms of the correlation coe�cient and coe�cients of variation
giving  

1� cov(�̂, �̂)

�0�0
+

Var(�̂)

�

2
0

!
=
⇣
1� ⇢�̂,�̂CV�̂CV�̂ + CV

2
�̂

⌘
. (19)

This factor only becomes important when the CVs are on the order of one. In such
a case, however, the estimability of the parameters is already in question. Thus,
under most useful circumstances, estimating R0 by the ratio of point estimates of
� and � su�ces.

4. Generation of synthetic data, model fitting and estimation. In order to
facilitate our exploration of the parameter estimation problem, we choose to use
simulated data. This ‘data’ is generated using a known model, a known parameter
set and a known noise structure, putting us in an idealized situation in which we
know that we are fitting the correct epidemiological model to the data, that the
correct statistical model is being employed and where we can compare the estimated



Where	
  to	
  Go	
  Next?!
Many	
  possible	
  direc&ons..	
  
1.  Include	
  uncertainty	
  in	
  ini&al	
  condi&on	
  

	
  

	
  We	
  took	
  I(0)	
  =	
  3.	
  Instead	
  es&mate	
  I(0)	
  together	
  with	
  β	
  and	
  γ 
	

 	

 	

(now	
  have	
  14	
  data	
  points)	
  
	
  Need	
  to	
  include	
  sensi&vity	
  of	
  I(t)	
  with	
  respect	
  to	
  I(0)	
  
	
   	
   	
  theory	
  very	
  similar	
  to	
  parameter	
  sensi&vi&es	
  
	
   	
   	
  see	
  equa&on	
  3.62	
  in	
  Banks’s	
  notes	
  

	
  

2.  What	
  is	
  the	
  appropriate	
  model?	
  
	
  

	
  SEIR	
  model?	
  (individuals	
  have	
  some	
  delay	
  before	
  becoming	
  infec&ous)	
  
	
  SEICR	
  model?	
  (model	
  “confinement	
  to	
  bed”)	
  
	
  Time	
  varying	
  parameters?	
  (e.g.	
  ac&on	
  taken	
  to	
  control	
  spread)	
  

	
  

	
  *	
  These	
  models	
  have	
  more	
  parameters…	
  can	
  we	
  es&mate	
  them	
  all	
  from	
  14	
  
	
   	
  data	
  points?	
  iden&fiability	
  	
  
	
  *	
  More	
  complex	
  models	
  are	
  more	
  flexible,	
  so	
  tend	
  to	
  fit	
  be~er:	
  How	
  do	
  we	
  
	
   	
  determine	
  if	
  increased	
  fit	
  jus&fies	
  increased	
  complexity	
  of	
  model?	
  
	
   	
  informa&on	
  criteria	
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