Parameter Estimation and Uncertainty Quantification in the Presence of Numerical Error

John Nardini

NCSU Tutorial Workshop on Parameter Estimation for Biological Models

July 29, 2019
Typical Inverse Problem

Consider:

Experimental data, \(y = \{y(t_j)\}_{j=1}^{N} \), and

Mathematical Model: \(u(t; \mathbf{q}) \)
Typical Inverse Problem (cont.)

The ordinary least squares (OLS) cost function summarizes how well \(q \) parameterizes \(u \) to fit \(y \)

\[
J(q) = \sum_{i=1}^{N} \left(y_j - u(t_j; q) \right)^2
\]

![Graph showing fitted curves with error](image1.png)

\(J(q_1) = 2.79 \)

![Graph showing fitted curves with error](image2.png)

\(J(q_2) = 0.52 \)
Typical Inverse Problem (cont.)

So we often parameterize $u(t; \mathbf{q})$ by:

$$\hat{\mathbf{q}} = \arg \min_{\mathbf{q} \in Q} J(q)$$
Typical Inverse Problem (cont.)

Theorem:
If \(y_j = u(t_j; q_0) + \varepsilon_j \) and \(\varepsilon_j \sim \mathcal{N}(0, \sigma^2), j = 1, \ldots, N \)

then:
\[
\hat{q} \sim \mathcal{N}(q_0, \sigma^2 V^{-1}), \quad V = \nabla u(t; q_0)^T \nabla u(t; q_0)
\]

Asymptotically as \(N \to \infty \)

But do we really know what \(u(t_j; q) \) is?
Numerical analysis for ODE Models

We often numerically solve ODE models of the form

\[
\frac{du}{dt} = f(u, t; q) \quad u(t_0) = u_0.
\]

We call a numerical solution, \(U(t; \Delta t, q) \), “order \(p \) accurate” if

\[
\|u(t; q) - U(t; \Delta t, q)\|_1 \approx C\Delta t^p
\]

Example: For MATLAB’s ode45 function, \(p = 4 \)
Revisiting the Inverse Problem Theory

Theorem: If $y_j = u(t_j; q_0) + \varepsilon_j$ and $\varepsilon_j \sim \mathcal{N}(0, \sigma^2)$, $j = 1, \ldots, N$, then

$$\hat{q} \sim \mathcal{N}(q_0, \sigma^2 V^{-1}), \quad V = \nabla u(t; q_0)^T \nabla u(t; q_0)$$

asymptotically as $N \to \infty$.

Corollary: If $U(t_j; \Delta t, q)$ is p order accurate, then

$$\hat{q}(\Delta t) \sim \mathcal{N}(q_0, \sigma^2 V_{\Delta t}^{-1})$$

Asymptotically as $N \to \infty, \Delta t \to 0$. The entries of $V_{\Delta t}^{-1}$ are order p accurate for the entries of V^{-1}.
Behavior of the Cost Function

\[J(q, \Delta t) = \sum (y_j - U(t_j; \Delta t, q))^2 \]
Final Behavior of the Cost Function

As $\Delta t \to 0$, if $U(t; \Delta t, q)$ is order p accurate,

$$J(q, \Delta t) \approx O(1) + O(\Delta t^p) + O(\Delta t^{2p}) + O(\Delta t^p)$$
Do I really care?

Usually No. But there are some cases where numerical error matters!

Example: Advection Equations

\[u_t + \nabla \cdot (vu) = 0 \]
\[v = v(x) \]
Numerical Simulations for Advection Equations

The Upwind Method is order $\frac{1}{2}$ accurate when $u(t, x; q)$ is discontinuous.

It adds numerical diffusion.
Numerical Simulations for Advection Equations

The Lax-Wendroff Method is order $2/3$ accurate when $u(t, x; q)$ is discontinuous.

It adds numerical dispersion.
Numerical Simulations for Advection Equations

The Beam-Warming Method is order 2/3 accurate when \(u(t, x; q) \) is discontinuous.

It adds numerical dispersion.
Parameter Estimation in the presence of numerical Error

Recall: If $U(t_j; \Delta t, q)$ is p order accurate, then

$$\hat{q}(\Delta t) \sim \mathcal{N}(q_0, \sigma^2 V^{-1}_{\Delta t}),$$

Asymptotically as $N \to \infty, \Delta t \to 0$. The entries of $V^{-1}_{\Delta t}$ are order p accurate for the entries of V^{-1}.
Parameter Estimation in the presence of numerical Error

\[\| \theta_0 - \hat{\theta} \|_2, \quad N = 30, \quad \eta^2 = 0.01 \]

<table>
<thead>
<tr>
<th>Numerical method</th>
<th>(p)</th>
<th>Order of (\hat{q}(\Delta t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upwind</td>
<td>0.5839</td>
<td>0.560</td>
</tr>
<tr>
<td>Lax-Wendroff</td>
<td>0.4737</td>
<td>1.125</td>
</tr>
<tr>
<td>Beam-Warming</td>
<td>0.7876</td>
<td>0.736</td>
</tr>
</tbody>
</table>
Cost function Behavior in the Presence of numerical Error

As Δt → 0, if \(U(t; \Delta t, q) \) is order \(p \) accurate,

\[
J(q, \Delta t) \approx O(1) + O(\Delta t^p) + O(\Delta t^{2p}) + O(\Delta t^p)
\]
Cost function Behavior in the Presence of numerical Error

\[J \text{ components, Lax-Wendroff Method, } N = 51, \eta^2 = 0 \]

\[p \approx 0.474 \]
\[q \approx 0.756 \]
\[B \text{ order } \approx 1.060 \]
\[C \text{ order } \approx 1.033 \]
\[D \text{ order } \approx 0.753 \]
Conclusions

- Numerical Error can also impact inverse problems
- Theory regarding the behavior of the OLS estimator and cost function in the presence of numerical error
- Relevant to hyperbolic advection equations
Thank you!

Thanks to Dr. David M. Bortz

The Joint NSF/NIH Mathematical Biology Initiative Program via grant NIGMS-R01GM126559

Contact:
jtnardin@ncsu.edu
Johnnardini.wordpress.ncsu.edu
@jnard98