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Advantages	and	challenges	 in	modeling

• Advantages
• Interpretability,	 gain	biological	 insight
• Ability	to	inform	the	model	with	biological	 knowledge

• Challenges
• The	complexity	 needs	to	match	the	hypotheses
• More	complex	models	 have	more	parameters,	more	uncertainty
• How	to	interpret	UQ	vs.	predictive	 value
• Model	refinement	 is	a	long	process



Part	1:	
Hybridizing	model-free	methods	with	modeling	to	

improve	forecasting



Motivation: Prediction

Goal: Want to predict the future state of a system

Assumption: Multivariate time series available (i.e. training data)
up to time T ; mechanistic model known

Problem: How accurately can we predict up to time T + FH
(forecast horizon)?

Kevin Flores Forecasting and UQ using hybrid models



Motivation: Prediction

Training Data Desired Prediction Noisy Data!
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The Parametric Framework

Consider the mechanistic model
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Predicting a Hindmarsh-Rose Neuron

Consider a Hindmarsh-Rose neuron

V̇ = y � aV 3 + bV 2 � z + 3.25

ẏ = 1 � dV 2 � y

ż = 0.005
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I V – voltage

I y– fast-scale dynamics

I z– slow-scale dynamics

I a, b, d , s– unknown model parameters

Assume: Noisy observations of V , y , z available
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Approach 1: Parametric Prediction

Idea: Fit observed time series to model
1. Estimate x and p until time T (Kalman filtering, shooting

methods, etc...)
2. Free-run the fitted model until time T + FH
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Non-parametric	 (model-free)	prediction

The Nonparametric Framework

I Instead of using the mechanistic model, noisy training data
can be used to build model-free predictions

I Numerous approaches exist, many based on Takens’ Method
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Attractor	reconstructionTakens’ Method of Attractor Reconstruction

For an observed time series x(t), a delay-coordinate vector

x
d

= [x(t), x(t � ⌧), x(t � 2⌧), . . . , x(t � d⌧)]

can be formed that reconstructs the attractor

I d : number of delays

I ⌧ : time-delay
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Nonparametric	predictionNonparametric Direct Prediction

Assume: x
d

= [x(T ), x(T � 1), x(T � 2), . . . , x(T � d)]

Goal: Predict x(T + FH)

1. Find neighboring delay vectors
[x(T 0), x(T 0 � 1), . . . , x(T 0 � d)], [x(T 00), x(T 00 �
1), . . . , x(T 00 � d)], . . . , [x(T k), x(T k � 1), . . . , x(T k � d)]
within training data

2. Identify the known x(T 0 + FH), x(T 00 + FH), . . . , x(T k + FH)
points

3. Build a local model to predict the unknown x(T + FH), e.g.

x(T + FH) ⇡ x(T 0 + FH) + x(T 00 + FH)+, . . . ,+x(T k + FH)

k
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Nonparametric Prediction Using
Takens’ Method

Training Data
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1. Form the current delay-coordinate state ( )

2. Find N nearest neighbors in delay-coordinate space ( )

3. Look-up the neighbors’ j step-ahead values ( )

4. Build a local prediction of current state ( )
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Nonparametric	prediction
Approach 2: Nonparametric Prediction

Idea: Ignore the mechanistic model– use the data to build a
predictive model
1. Denoise observed time series (e.g. F. Hamilton, T. Berry and T.

Sauer. Phys. Rev. X 6, 011021 (2016))

2. Build predictions until time T + FH using only training data
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General	advantages	and	challenges	with	non-
parametric	(data	science)	methods
• Advantages

• Don’t	need	to	develop	a	mechanistic	 model
• Neural	network	architectures	 designed	 for	the	type	of	data	(CNN,	RNN)

• Challenges
• Data	requirements	may	not	match	the	scale	 in	biology
• Corrupted	by	noise
• Lack	of	interpretability
• Difficult	to	make	conclusions	 about	mechanistic	 processes
• Lack	of	generalizability	 to	data	outside	 the	training	set



Hybrid	modeling	and	prediction

• Parameter	estimation	for	a	
mathematical	model	could	be	
difficult	
• Parameter	correlations
• Rugose cost	function	 landscape
• High	parameter	uncertainty
• Computational	 time

• May	be	model	misspecification	for	
some	variables

Hamilton,	Lloyd,	Flores,	Hybrid	modeling	and	prediction	of	dynamical	systems,	2017,	PLoS Computational	Biology

Franz	Hamilton,	 ARL
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The Hybrid Framework

Consider the mechanistic model
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The Hybrid Framework

Consider the mechanistic model
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The Hybrid Framework

Assume: Noisy observations of V , y , z available

Goal: Refine our prediction of V (the thing we really care about)

V̇ = y � aV 3 + bV 2 � z + 3.25

ẏ = 1 � dV 2 � y

ż = 0.005

✓
s

✓
V +

8

5

◆
� z

◆

Idea: Fit the V equation; use the observations of y and z

Only need to estimate a and b parameters!
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Hybrid	predictionApproach 3: Hybrid Prediction

Idea: Use a model for the variable you want to predict and
nonparametrically forecast the rest
1. Fit states and parameters of variable of interest
2. Nonparametrically forecast remaining variables
3. Integrate nonparametric predictions with the modeled variable

Kevin Flores Forecasting and UQ using hybrid models



Example:	predicting	neuronal	networks

Hindmarsh-Rose	model	(random	connections)

Predicting neuronal network dynamics

We now consider the difficult high dimensional estimation and prediction problem posed by
neuronal network studies. If we are only interested in predicting a portion of the network,
then we can use the proposed hybrid method to refine our estimation and prediction while
simultaneously reducing estimation complexity. As an example of this potential network appli-
cation we consider the prediction of spiking dynamics in a network of M Hindmarsh-Rose
neurons [29]
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where i = 1, 2, . . ., M. xi corresponds to the spiking potential while yi and zi describe the
fast and slow-scale dynamics, respectively, of neuron i. Each individual neuron in the network
has parameters ai = 1, bi = 3 and ci = 5 which are assumed to be unknown. βim represents the
connectivity coefficient from neuron i to neuron m. For a network of size M, we have M2 − M
possible connection parameters since neuron self connections are not allowed (i.e. βii = 0).
These connection parameters are also assumed to be unknown. The neurons in this
network are coupled to one another through the voltages by an exponential term which acts as
a gating function, allowing the transfer of information only when a neuron is about to spike.
This prevents constant communication across the network, and has biophysical plausibility
[40].

For this example we examine networks of size M = 3 with 5 random connections. Data
from these networks are generated using a fourth-order Adams-Moulton method with sample
rate h = 0.08 ms. We assume that the training data consists of 3000 observations, or 240 ms, of
the x1, x2, x3 variables each of which are corrupted by Gaussian noise with mean 0 and variance
of 0.2. Under the stated parameter regime, the neurons in the network spike approximately
every 6 ms, meaning our training set has on average around 40 spikes per neuron. In this
example, we restrict our focus to predicting 8 ms of the x3 variable (though a similar analysis
follows for the prediction of x1 and x2). Fig 4a shows a representative realization of this
problem.

Fig 4b shows the resulting accuracy in predicting x3 when using parametric (black), non-
parametric (blue) and hybrid (red) methods. Results are averaged over 200 realizations with
error bars denoting standard error. Error bars are only shown for every tenth forecast point so
as to aid in visualization. At the 80% uncertainty level (solid line), the parametric method per-
forms poorly. The parametric approach uses the full mechanistic model described by Eq 9 for
modeling and prediction, requiring estimation of the x, y and z state variables and parameters
a, b and c for each neuron, as well as the full connectivity matrix. Notice that once again with
80% uncertainty, the scale of error for the parametric method is much larger compared to the
other methods.

The nonparametric method for this example (τ = 1, d = 9) uses κ = 10 neighbors for build-
ing the local model for prediction. Network level dynamics such as these can prove problem-
atic for nonparametric prediction due to the increased complexity of the system dynamics. As
the size of the network grows, the requisite data needed to make accurate multi-step-ahead

Hybrid modeling and prediction of dynamical systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005655 July 10, 2017 12 / 20



Example:	predicting	neuronal	networks
• Sampled	200	random	networks,	3	
neurons,	5	connections.

• Train	on	240ms,	predict	8ms.
• Hybrid	model	enabled	higher	accuracy	
(SRMSE)	for	a	given	initial	parameter	
uncertainty.

• Hybrid	modeling	resulted	in	more	
accurate	parameter	estimates	and	lower	
parameter	uncertainty.

The benefit of the hybrid method in analyzing this network is that since we are only inter-
ested in neuron 3, we can assume a mechanistic equation for only this neuron
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and nonparametrically represent neuron 1 and neuron 2. The hybrid model in Eq 10 results in
a substantial reduction in the complexity of the estimation problem while still giving us some
information about the dynamics of neuron 3. This blending once again results in improved
prediction accuracy. We see that the the hybrid method outperforms both parametric and
nonparametric predictions. For comparison purposes, we show the parametric method at a
smaller uncertainty level of 50% (Fig 4b, dotted line). The hybrid method with higher uncer-
tainty offers comparable prediction within the first 2 ms to the parametric method with this
lower uncertainty level. Note that unlike in the Lorenz-63 example, we do not consider the
parametric method with 20% uncertainty since reasonable parameter estimates and predic-
tions are obtained with 50% uncertainty. Table 2 shows the robustness of the hybrid method
in estimating the individual parameters for neuron 3. Even with a high uncertainty, the hybrid
method is able to obtain accurate and reliable estimates of the neuron parameters compared to
the parametric method at both the high and medium uncertainty levels.

Predicting flour beetle population dynamics

We now investigate the prediction problem in a well-known data set from an ecological study
involving the cannibalistic red flour beetle Tribolium castaneum. In [30], the authors present
experimentally collected data and a mechanistic model describing the life cycle dynamics of T.
castaneum. Their discrete time model describing the progression of the beetle through the lar-
vae, pupae, and adult stages is given by

LÖt á 1Ü à bAÖtÜe�celLÖtÜ�ceaAÖtÜ

PÖt á 1Ü à LÖtÜÖ1� mlÜ
AÖt á 1Ü à PÖtÜe�cpaAÖtÜ á AÖtÜÖ1� maÜ

Ö11Ü

Table 2. Summary of neuron 3 parameter estimation results. Mean and standard deviation calculated over 200 realizations. The hybrid method once
again is robust to a large initial parameter uncertainty. The parametric method on the other hand is unable to obtain reliable estimates of the neuron parame-
ters with large uncertainty.

Neuron 3 Parameter Estimation Results

True Parameter Method Mean Standard Deviation

a3 = 1 Hybrid (80% Uncertainty) 0.98 0.04

Parametric (80% Uncertainty) 1.07 0.51

Parametric (50% Uncertainty) 0.98 0.15

b3 = 3 Hybrid (80% Uncertainty) 2.96 0.10

Parametric (80% Uncertainty) 2.92 0.88

Parametric (50% Uncertainty) 2.92 0.26

c3 = 5 Hybrid (80% Uncertainty) 4.93 0.16

Parametric (80% Uncertainty) 4.66 1.04

Parametric (50% Uncertainty) 4.83 0.43

https://doi.org/10.1371/journal.pcbi.1005655.t002

Hybrid modeling and prediction of dynamical systems
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predictions substantially increases. For the small network in this example, the nonparametric
method is still able to provide fairly accurate predictions. However, dimensionality of the sys-
tem and the required data needed is a considerable limiting factor when analyzing high-
dimensional networks.

Fig 4. Predicting neuron potential x3 in random 3-neuron Hindmarsh-Rose networks. (a) 3000 samples (or 240 ms) of
training data (grey circles) are available from each neuron in the network. From the end of the training data (indicated by
dashed black line), we want to accurately predict the next 8 ms of x3 (solid black line). (b) Forecast accuracy in predicting 8
ms of x3 when using parametric (black), nonparametric (blue) and hybrid (red) methods. Results averaged over 200 randomly
generated 3-neuron Hindmarsh-Rose network realizations and error bars, shown only for every tenth forecast point, denote
standard error. At 80% uncertainty (solid line), the hybrid method outperforms both parametric and nonparametric methods.
When considering the parametric method with 50% uncertainty, prediction accuracy between it and the hybrid method is
comparable over the first 2 ms.

https://doi.org/10.1371/journal.pcbi.1005655.g004
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Hybrid modeling and prediction of dynamical systems
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Model	for	one	neuron



Predicting	beetle	population	dynamics
Predicting Red Flour Beetle Dynamics

Experimental data (Constantino et. al. 1997, Science)

I Experimentally altered adult mortality (c
pa

): 7 values

I 3 replicates per c
pa

, total of 21 data sets.

I 41 time points per data set, sampled every 2 weeks.

I Total counts of Larvae, Pupae, and Adults.

L(t + 1) = bA(t)e�c

el

L(t)�c

ea

A(t)

P(t + 1) = L(t)(1 � µ
1

)
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)
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Predicting Red Flour Beetle Dynamics

Predict Adult population

Parametric Nonparametric Hybrid
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Hybrid	modeling	with	Bayesian	estimation

• Studied	 how	hybrid	modeling	affects	
parameter	estimation.

• Hybridizing	with	Bayesian	MCMC	yields	
parameter	correlation	plots	from	the	
sampled	posterior	distribution.

• Used	a	stage-structured	model	with	a	
feedback	(7	parameters).

• Parameter	estimation	for	the	full	model	
resulted	in	many	parameter	correlations,	
high	parameter	and	prediction	uncertainty.

Forecasting and Uncertainty Quantification Using a Hybrid… 1589

Fig. 5 Pairwise parameter plots for the full model (LPA). The data from experiment 1 were used for
parameter estimation

many coefficients close to 1. We note that correlation, such as that observed between
µ1 and b, does not necessarily indicate that parameters are nonidentifiable unless the
Pearson coefficients are close to ±1 or pairwise plots are single valued. However, the
variability in pairwise plots can be influenced by the level of observation noise, 20%
in this case, and the correlation coefficients, shown in Fig. 7, are close to 1.

This motivates the analysis of the rank deficiency of the FIM. The FIM has been
previously used in subset selection algorithms that seek to predict which subsets of
parameters are identifiable for a given model and available set of data. Importantly,
these FIM-based methods take into account the sensitivity of the model output with
respect to parameters and combine this information with the effect of parameter cor-
relations. For example, insensitive parameters are more difficult to identify from data
since a large change in the parameter does not affect the model output, and in par-
ticular, does not affect how well the model fits the data. If the number of estimated
parameters is given by p, then the FIM is a p × p matrix, and the rank of the FIM
can be used to estimate the number of parameters that are practically identifiable
(Olufsen and Ottesen 2013). The FIM is equal to

∑N
i=1 χT (ti )χ(ti ), where the matrix

χ(ti ) contains sensitivities of the model with respect to parameters at time point
ti in the training data. The k, j-th entry of χ(ti ) is given by { ∂yk(ti )

∂θ j
}, where yk is

123
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Fig. 1 Empirically recorded population levels of adult flour beetles over a period of 82weekswith normally
distributed random observation error added. Data to the left of the vertical bar are used for parameter fitting
while the data to the right are left for forecast validation

2 Data and Methods

2.1 Data

We use longitudinal data of total counts for larvae, pupae, and adults in flour beetle
populations. The data came from seven different experimental conditions in which
adult mortality rates were altered, resulting in non-equilibrium dynamics; three repli-
cates were performed in each condition for a total of 21 data sets (Constantino et al.
1997). Data were sampled every other week over an 82-week period for a total of 41
data points per time series. To test our methodology under noisy observation condi-
tions similar to ecological systems, we added normally distributed random observation
error to each time series using a coefficient of variation (CV) of 0.2, which is consis-
tent with reported noise levels in survey data (Francis et al. 2003; Perretti et al. 2013).
The data from one experiment, shown in Fig. 1 as black x’s, exemplify the typical
non-equilibrium time series behavior of the beetle system. As denoted by the vertical
line in Fig. 1, each time series is divided into a training set (first 32 time points) and
a testing set (last nine time points). The training set is used for Bayesian inference or
SSR, and the testing set is used to evaluate the accuracy of the considered models.

2.2 Mathematical Model

We use the previously validated discrete-time age-structured model

L(t) = bA(t − 1)e−cel L(t−1)−cea A(t−1), (1)

P(t) = L(t − 1)(1 − µ1), (2)

A(t) = P(t − 1)e−cpa A(t−1) + A(t − 1)(1 − µa), (3)

123
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Fig. 4 Prediction with uncertainty quantification for the A variable using a hybrid model (bottom) and full
model (top). Data (black x’s) are from experiment 1 for which cpa was experimentally set to zero. The
vertical black line separates the training data used for parameter estimation from the testing data used for
evaluating forecast accuracy. The 95% credible and prediction intervals are shown as dark and light gray,
respectively. The black line represents the mean of the credible interval (best fit)

the forecast horizon. These results are similar to what we previously observed when
combining SSR methods with Kalman filtering techniques for parameter estimation
(Hamilton et al. 2017). Focusing on the comparison between the hybrid models and
the SSR method, we found that hybrid models were able to outperform SSR and stay
below a mean SRMSE of 0.8 for up to 10 weeks of prediction in the forecast horizon.
These results indicate that the hybridmodels are themost accurate choice for predicting
future time series as compared to the full model or SSR alone. By replacing modeled
variables with data and SSR predictions, the hybrid approach, while being a more
complicated methodology, is actually a simpler mathematical model in the context
of inverse problems. In the following sections, we perform an analysis to investigate
several reasons why the hybridmethod simplifies the parameter estimation task. To the
best of our knowledge, such an analysis has not been carried out for a hybrid modeling
approach.

3.2 Uncertainty Quantification

Here, we tested our proposed methodology for uncertainty quantification with hybrid
models on the flour beetle data set and model. The top of Fig. 4 illustrates the full
model fit to experimental data for one time series; only the A variable is shown for
comparison to the hybrid model that does not use the L or P variables. This instance
is representative of a scenario in which the full model prediction is approximately
equivalent to the mean of the training data and thus performs no better than the
naive prediction. In contrast, the bottom of Fig. 4 shows the hybrid model for the

123
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Hybrid	modeling	with	Bayesian	estimation

• Hybrid	modeling	can	reduce	
parameter	correlations.	
• Leads	to	increased	
parameter	and	prediction	
confidence.

Forecasting and Uncertainty Quantification Using a Hybrid… 1587

Fig. 4 Prediction with uncertainty quantification for the A variable using a hybrid model (bottom) and full
model (top). Data (black x’s) are from experiment 1 for which cpa was experimentally set to zero. The
vertical black line separates the training data used for parameter estimation from the testing data used for
evaluating forecast accuracy. The 95% credible and prediction intervals are shown as dark and light gray,
respectively. The black line represents the mean of the credible interval (best fit)

the forecast horizon. These results are similar to what we previously observed when
combining SSR methods with Kalman filtering techniques for parameter estimation
(Hamilton et al. 2017). Focusing on the comparison between the hybrid models and
the SSR method, we found that hybrid models were able to outperform SSR and stay
below a mean SRMSE of 0.8 for up to 10 weeks of prediction in the forecast horizon.
These results indicate that the hybridmodels are themost accurate choice for predicting
future time series as compared to the full model or SSR alone. By replacing modeled
variables with data and SSR predictions, the hybrid approach, while being a more
complicated methodology, is actually a simpler mathematical model in the context
of inverse problems. In the following sections, we perform an analysis to investigate
several reasons why the hybridmethod simplifies the parameter estimation task. To the
best of our knowledge, such an analysis has not been carried out for a hybrid modeling
approach.

3.2 Uncertainty Quantification

Here, we tested our proposed methodology for uncertainty quantification with hybrid
models on the flour beetle data set and model. The top of Fig. 4 illustrates the full
model fit to experimental data for one time series; only the A variable is shown for
comparison to the hybrid model that does not use the L or P variables. This instance
is representative of a scenario in which the full model prediction is approximately
equivalent to the mean of the training data and thus performs no better than the
naive prediction. In contrast, the bottom of Fig. 4 shows the hybrid model for the
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Fig. 6 Pairwise parameter plots for a hybrid model (SPA). The data from experiment 1 were used for
parameter estimation

Fig. 7 Correlation coefficients among all pairs of estimated parameters. Computations were performed
for each model choice where the choices are 1=SSA, 2=SPS, 3=SPA, 4=LSS, 5=LSA, 6=LPS, and
7=LPA. Coefficients were computed only for pairs of parameters that existed among the hybrid models.
Each star within each subplot represents a correlation coefficient for a single time series, with 21 total
possible time series

123
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Fig. 1 Empirically recorded population levels of adult flour beetles over a period of 82weekswith normally
distributed random observation error added. Data to the left of the vertical bar are used for parameter fitting
while the data to the right are left for forecast validation

2 Data and Methods

2.1 Data

We use longitudinal data of total counts for larvae, pupae, and adults in flour beetle
populations. The data came from seven different experimental conditions in which
adult mortality rates were altered, resulting in non-equilibrium dynamics; three repli-
cates were performed in each condition for a total of 21 data sets (Constantino et al.
1997). Data were sampled every other week over an 82-week period for a total of 41
data points per time series. To test our methodology under noisy observation condi-
tions similar to ecological systems, we added normally distributed random observation
error to each time series using a coefficient of variation (CV) of 0.2, which is consis-
tent with reported noise levels in survey data (Francis et al. 2003; Perretti et al. 2013).
The data from one experiment, shown in Fig. 1 as black x’s, exemplify the typical
non-equilibrium time series behavior of the beetle system. As denoted by the vertical
line in Fig. 1, each time series is divided into a training set (first 32 time points) and
a testing set (last nine time points). The training set is used for Bayesian inference or
SSR, and the testing set is used to evaluate the accuracy of the considered models.

2.2 Mathematical Model

We use the previously validated discrete-time age-structured model

L(t) = bA(t − 1)e−cel L(t−1)−cea A(t−1), (1)

P(t) = L(t − 1)(1 − µ1), (2)

A(t) = P(t − 1)e−cpa A(t−1) + A(t − 1)(1 − µa), (3)
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Potential	issues	solved	by	hybrid	modeling

• Reduces	the	number	of	parameters	that	need	to	be	estimated	at	the	
same	time.
• Speeds	up	computational	time	for	optimization.
• May	reduce	parameter	correlations,	increase	confidence.
• Unlike	machine	learning	methods,	can	still	retain	an	interpretable	
model	and	biologically	meaningful	parameters.



Part	2:	
Hybridizing	non-parametric	probability	
distribution	estimation	with	PDEs	to	infer	

population	heterogeneity



Glioblastoma	Multiforme (GBM)

Sagittal	cross-section	 of	human	 brain	with	GBM

GBM	is	a	deadly	primary	brain	tumor	
characterized	by:

• Phenotypic	heterogeneity
• Low	survivability
• Low	response	 to	treatment

Cancers	often	modeled	 by	partial	
differential	 equations,	 because	they	can	
incorporate

• Spatial	structures,	diffusion,	taxis

• !"
!#
= 𝐷 !&"

!'
()**+,)-.

+ 𝜌𝑢(1 − 𝑢)
6-7),8)9	7;-<8=



Importance	of	Heterogeneity

Source: Saunders,	Nicholas	A.,	et	al.	"Role	of	intratumoural heterogeneity	in	
cancer	drug	resistance:	molecular	and	clinical	perspectives."	EMBO	molecular	
medicine 4.8	(2012):	675-684.



Incorporating	Heterogeneity	 in	Cancer	Models

• We	can	separate	the	tumor	cell	population	into	subpopulations:
• `Go	or	grow’	in	glioma growth
• Androgen-dependent	 and	androgen-independent	 cells	 in	prostate	cancer
• Radio-sensitive	 and	radio-resistant	 cells	 for	treatment	 strategies
• Oxidative-Phosphorylated	 cells	and	glycolitic cells

• Question: How	can	we	estimate	heterogeneity,	e.g.,	 in	model	
parameters,	without	making	assumptions	about	which	subpopulations	
exist?



Random	Differential	Equations

Dispersion	and	bifurcation	features	are	not	accounted	
for	when	using	static	parameters

Source: Banks,	H.	T.	&	Davis,	J.	L.	A	
comparison	of	approximation	methods	for	
the	estimation	of	probability	distributions	
on	parameters.	Appl.	Numer.	Math.	57,	
753–777,	(2007).



Random	Differential	Equations

Consider	the	diffusion	(𝑫)	and	growth	(𝝆)	as	random	variables	defined	on	
a	compact	set	Ω = Ω𝑫×Ω𝝆

Model
𝜕𝑢(𝑡, 𝑥, 𝑫, 𝝆)

𝑑𝑡
= 𝛻 M 𝑫𝛻𝑢 𝑡, 𝑥,𝑫, 𝝆 + 𝝆𝑢(𝑡, 𝑥, 𝑫, 𝝆)(1 − 𝑢(𝑡, 𝑥, 𝑫, 𝝆))

Observation

𝑢 𝑡, 𝑥 = 𝔼 𝑢 𝑡, 𝑥,M,M , 𝑃 = Y 𝑢 𝑡, 𝑥,𝑫, 𝝆 𝑑𝑃(𝑫, 𝝆)
Z

Rutter,	Banks	 and	Flores.	Estimating	Intratumoral Heterogeneity	 from	Spatiotemporal	Data, JMB	2018.



Prohorov Metric	Framework	 (PMF)

Idea:	Using	data,	determine	the	approximate	
distributions	of	𝑫 and	𝝆,	without	 any	underlying	
assumptions	 about	 the	pdf/cdf

𝑃[ = argmin
												^_ (Z)

` data 𝑡a, 𝑥b −Y 𝑢 𝑡a, 𝑥b, 𝑫, 𝝆 𝑑𝑃(𝑫, 𝝆)
Z

c

b,a



Prohorov Metric	Framework	Theory

1. Since	Ω = Ω𝑫×Ω𝝆 is	a	compact	set,	𝑃 Ω is	a	
compact	metric	space

2. The	minimizer	is	continuous	in 𝑃
⟹ There	exists	a	(not	necessarily	unique)	minimizer

Theorem
There	exists	 a	(not	necessarily	 unique)	 minimizer	 𝑃[ (Banks,	Hu,	 Thompson,	 2015)

𝑃[ = argmin
											^∈^_(Z)

` data 𝑡a,𝑥b −Y 𝑢 𝑡a,𝑥b, 𝑫, 𝝆 𝑑𝑃(𝑫, 𝝆)
Z

c

b,a



Creating	Synthetic	Data

We	finely	mesh	over	the	parameter	𝝆 ∈ [0,2] and	create	
our	desired	pdf
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Creating	Synthetic	Data
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Creating	Synthetic	Data

𝜕𝑢(𝑡, 𝑥, 𝜌j)
𝑑𝑡

= 𝛻 M 𝐷𝛻𝑢 𝑡, 𝑥, 𝜌j + 𝜌j𝑢 𝑡, 𝑥, 𝜌j 1 − 𝑢 𝑡, 𝑥, 𝜌j 	
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Creating	Synthetic	Data

𝜕𝑢(𝑡, 𝑥, 𝜌j)
𝑑𝑡

= 𝛻 M 𝐷𝛻𝑢 𝑡, 𝑥, 𝜌j + 𝜌j𝑢 𝑡, 𝑥, 𝜌j 1 − 𝑢 𝑡, 𝑥, 𝜌j 	
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Creating	Synthetic	Data
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Creating	Synthetic	Data
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Performing	the	Inverse	Problem:	
Delta	Functions

Assume	there	are	𝑀 nodes	equispaced over	Ω𝝆 such	
that	𝝆u = Δwx , 𝑘 = 1,… , 𝑀

where	𝜔j ≥ 0 represent	a	discrete	probability	
density	function.	Thus,	we	require

𝑃[ = argmin
												^_(Z)

` data 𝑡a , 𝑥b − `𝑢 𝑡a, 𝑥b, 𝐷, 𝜌j 𝜔j

u

jmn

c

b,a

` 𝜔j

u

jmn

= 1



Performing	the	Inverse	Problem:	
Delta	Functions

Example:	we	have	M=11	
nodes,		equispaced over	
[0,2] and	we	precompute	
𝑢(𝑡, 𝑥, 𝐷, 𝜌j )

We	are	solving	for	the	𝜔j ,	
the	discrete	weights	

𝑃[ = argmin
												^_(Z)

` data 𝑡a , 𝑥b − `𝑢 𝑡a, 𝑥b, 𝐷, 𝜌j 𝜔j

u

jmn

c

b,a
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Performing	the	Inverse	Problem:	
Spline	Functions

Assume	𝑀 nodes	equispaced over	Ω𝝆 such	that	
𝝆u = 𝑠j(𝝆), 𝑘 = 1, … , 𝑀 ,	where	𝑠j 	are	hat	
functions

where	𝑝j = 𝑎j𝑠j 𝝆 ≥ 0 represent	a	probability	
density	function.	Thus,	we	require

𝑃[ = argmin
												^_ (Z)

` data 𝑡a, 𝑥b − `𝑎j Y 𝑢 𝑡a , 𝑥b, 𝐷, 𝝆 𝑠j 𝝆 𝑑𝝆
Z𝝆

u

jmn

c

b,a

`𝑎j Y 𝑠j 𝝆 𝑑𝝆
Z𝝆

u

jmn

= 1



Performing	the	Inverse	Problem:	
Spline	Functions

Example:	we	have	M=11	
nodes,		equispaced over	
[0,2]

We	are	solving	for	the	𝑎j

𝑃[ = argmin
												^_ (Z)

` data 𝑡a, 𝑥b − `𝑎j Y 𝑢 𝑡a , 𝑥b, 𝐷, 𝝆 𝑠j 𝝆 𝑑𝝆
Z𝝆

u

jmn

c

b,a
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How	to	choose	M:	the	optimal	number	
of	nodes?

Increasing	M:	the	number	 of	nodes
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How	to	choose	M:	the	optimal	number	
of	nodes?
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How	to	choose	M:	the	optimal	number	
of	nodes?
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How	to	choose	M:	the	optimal	number	
of	nodes?

Akaike	Information	Criteria	(AIC)	as	a	model	
comparison	test	in	the	context	of	least-squares

𝐴𝐼𝐶 = 𝑁 ln
RSS
𝑁

+ 𝑁 1 − ln 2𝜋 + 2(𝑀 + 1)

𝑁: number	of	data	points
RSS:	error	between	data	and	solution	𝑢(𝑡, 𝑥)
𝑀: number	of	parameters	being	fit	(our	𝑀 nodes)	



How	to	choose	M:	the	optimal	number	
of	nodes?
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Representative	Results:	finding	𝝆
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Representative	Results	

𝝆	normally	distributed	and	𝑫 bigaussian
Goal:	Recover	parameter	distributions
data 𝑡a , 𝑥b =sim 𝑡a , 𝑥b + 𝜀sim 𝑡a , 𝑥b

𝜀~0.05𝑁(0,1)
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Resulting	pdf	Estimates
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Resulting	cdf Estimates

Rutter,	Banks	and	Flores.	Estimating	Intratumoral Heterogeneity	from	Spatiotemporal	Data. Under	review
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Treatment	Prediction	Assuming	Heterogeneity

Assuming	a	log-kill	hypothesis,	we	add	the	term:
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How	Dependent	are	Results	on	Initial	
Conditions?

• Chose	optimal	number	of	nodes	assuming	uniform	initial	conditions
• Repeat	100	parameter	estimations	with	random	initializations	
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Conclusions

• We	can	recover	parameter	distributions	from	spatiotemporal	data	
from	a	variety	of	pdfs

• Assuming	cellular	homogeneity	may	result	in	overestimating	
treatment	efficacy

• Some	distribution	recoveries	are	sensitive	to	initial	guesses
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