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Aims of this Lecture

Model fitting using least squares

Quantification of uncertainty in parameter estimates: asymptotic statistical
theory

Sensitivity analysis (local linear analysis)



Introduction

SIR model: Mathematical model for the spread of an infection through a population
by person-to-person contact

This mathematical model describes the time evolution of the state variables
S, I and R, using a set of differential equations, whose terms describe the rates at
which various biological processes (infection and recovery) happen

ds/dt = —BSI/N
infection recovery
S - ] = R dl/dt = BSI/N — y1
dR/dt = y 1.

Parameters: constants that appear in the functions describing these rates



The “forward problem”

ds/dt = —BSI/N
infection recovery
S - - dl/dt = BSI/N — v
dR/dt = y 1.

If we know the model equations, the values of the parameters and the initial
values of the states, we can (numerically) solve the model forwards in time to find
out how the state variables will evolve
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The “inverse problem” (parameter estimation)

In many cases, we don’t know the values of the parameters, but we have
observations of the system (e.g. time series data)
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Can we figure out parameter values that would make the model exhibit behavior
that is consistent with observed data?

Inverse problem: dynamical behavior — parameters



Least-Squares Fitting

One approach to find unknown parameter values: fit a model to time series data

“trajectory matching”: find parameter values for which the model provides the
best fit to a data set

What do we mean by “best fit”?

Least squares criterion: (ordinary least squares)
Minimize sum of squared differences between model predictions and observed data

- “sum of squared errors”

— hopefully familiar from simple linear regression

n
: 2
F(6) = E( ymodel predicted (1 9) _ yobserved ( ) )
=

Here, O is the vector of parameters



Least-Squares Fitting

Least squares criterion: minimize sum of squared differences between model predictions and
observed data (sum of squared errors)

n
F(O)= E( ymodel predicted ( t; 9)_ yobserved (fi) )2
i=1
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[Why do we use sum of squares? 1. Cannot simply add errors (cancelation of + and - errors)
2. Sum of squared errors is better behaved than summed absolute errors.]



Least-Squares Fitting

n

. . . . A 1 2
Minimization problem 9= argmin E:(ymodel predlcted(ti;e)_yobserved(ti))
{6 feasible}

L =1

1. Cannot solve this analytically in general (linear regression is an exception),
so will probably need to do optimization numerically
Process can be non-trivial, e.g. if the function F(0) has multiple local minima

2. If our model is an ODE, we probably don’t have a formula for the model’s
output, so will have to numerically solve the ODE to make predictions
If the initial condition of our ODE is unknown/uncertain, we can include
it in the list of quantities to be estimated

3. Estimates depend on the data: would get a different estimate if data was
different
Mathematically: the best-fitting parameter vector is a random variable,
and its estimation is a statistical process

What are the uncertainties in the estimates we obtain?
“standard errors” for parameter estimates?



More Generally... State Space Notation

T : :
Model: — — f(;lg7 t: 9) , Where x and f are m dimensional vectors,
and 0O is a p dimensional vector of parameters

Observation function (maps model to observable quantity):

y(t) = h(x,t;0)

Ordinary least squares parameter estimate is

a

n

: 2
{ arg min }< E(ymodel predicted (tl-;H)— yobserved (ti) ) |
0 feasible
L i=1

0




Uncertainty Estimates: Intuition

Nonlinear regression theory can be used to provide uncertainty estimates

Intuition: consider two graphs of error sum of squares, based on two different
models
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Which gives us more certainty in the parameter estimate?
For 2 there is a larger range of parameter values that gives a reasonable fit
In some sense, there is less information about the true value of the parameter

Intuition: the curvature (2"? derivative) of the SS function at its minimum is an
inverse measure of the information

Small second derivative: less information/more uncertainty in value

Idea is formalized in the notion of Fisher information matrix (coming soon)



Uncertainty Estimates: Intuition

o o
(2] ~
‘ ‘

o
&)
T

Error Sum of Squares
o o
©__H

o
o

A couple of comments:
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1. By the chain rule, derivatives of the sum of squares function

Z {ypredlcted £ 9) yobserved (tz) }2

with respect to the parameters will involve derivatives of model predictions
with respect to the parameters (we call these sensitivities)

It will be difficult to estimate insensitive parameters

2. Model 2 appears to be a better fit (smaller value for error sum of squares)
Is there a meaningful notion of how improved the fit is?



Uncertainty Estimates

We need a statistical model for our observations
describes the origin of the “errors” in the data

Simplest statistical model: observations are the values predicted by the model
under the “true” parameter values plus observation error

yobserved ( ti)

model predicted ( t: gtrue ) re

e; are the observation errors

In the simplest setting, we assume errors are independent, identically distributed
and have constant variance, o2
note: following theory is exact if errors are normal, but we don’t need to
assume errors are normal if we appeal to large sample size theory
(asymptotic theory)

can also view the following as providing a bound on uncertainty
(see Marisa’s talk)



Uncertainty Estimates

We ask the question:

Suppose we could watch the system evolve over time on multiple occasions,
giving us a collection of data sets [because we have different realizations of the
noise process], and estimated the parameter values for each of those data sets...
How much variation would we see in the parameter estimates?

Could characterize this variation by the variance in the values of the estimates

Could also examine the correlation between estimates of different parameters,
captured by the covariance between their values

All this information is summarized in the covariance (variance/covariance) matrix,

Var( cov(f3 ))

For SIR example: X = ( A 2 ’ﬁ
cov(f,%)  Var(9)



Uncertainty Estimates for Parameters

Asymptotic (large sample size) theory says that the parameter estimator (a
random variable) has a multivariate normal distribution, centered on the true
parameter vector and with variance-covariance matrix

¥ =07 (x(0)"

—1

X(Ho))

Here y is the n x p matrix of sensitivities, with entries x(6o):; =

N\

(discuss calculation of sensitivities soon!)
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Problem: we don’t know 0, or o2 (true values), so we make use of our estimates



Uncertainty Estimates for Parameters

Asymptotic (large sample size) theory says that the parameter variance-covariance
matrix for the estimated parameters is

~ T ~\ 1
=62 (x"(0) x™ ()
Here, 6 isour least squares estimate of the parameters — Unbiased estimate

&2 is (minimized value of error sum of squares) / (n — p)

8ypredicted (ti : é)

) (™) (9).
x"™ (0) is the n x p matrix of sensitivities, with entries * 0):; 09
[ oyl outtrid ou(t1:0)
90, 90, T 00,
Oy(t2:0)  dy(ta;0) dy(t2;0)
90, 965 T 00,

x"(0) =

Ay(tn; 0)  y(tn;0) Oy (tn;0)
90, 905 e 00,



Uncertainty Estimates for Parameters

Standard errors (SE: standard deviations for the estimated parameters) can be

calculated by taking square root of appropriate entry on diagonal entry of

Notice that estimates of different parameters will typically be correlated

COV(é 0

Calculate correlation between parameter estimates using p =

)
SE(6;) SE(6;)



Sensitivities

(Local) Sensitivity: partial derivative of some quantity of interest with respect to a
parameter

In our setting, we will want to calculate sensitivities of the state variables with
respect to parameters...

I
... e.g.if y(t) = I(t), we would need to calculate g—l(t) and 8—(t)

oy

Remember: derivatives relate change in input to change in output:

d d
for the derivative —y, we have Ay =~ Y Az
dx dx

Sensitivities say how solution curve changes in response to a change in parameter

B
Ay(t) ~ a_i“) AA



Sensitivities

In our setting, we want to calculate sensitivities of the state variables with respect
to parameters:
partial derivatives of state variables with respect to parameters

e.g. ﬂ(t) or @(t)

op

dr

Example: y(t) = A cos(27t)
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Sensitivities

In our setting, we want to calculate sensitivities of the state variables with respect

to parameters:
partial derivatives of state variables with respect to parameters

ol dy

e.g. %(t) or E(t)

Example: y(t) = A cos(27t)

Sensitivity: = cos(27t)

]
H4 1) =




Sensitivities

In our setting, we want to calculate sensitivities of the state variables with respect
to parameters:
partial derivatives of state variables with respect to parameters

g 9L dy
& s SLo

y(t; A+ AA)

Example: y(t) = A cos(27t)

Sensitivity: = cos(27t) 0-

]
H4 1) =

Interpretation: how does y(t) change
if A is increased by a small amount?

8 | L | L | L | L J
Ay(t) ~ az()AA 0 02 04~ 08 0.8 1

Sensitivity gives sign and magnitude of change of y(t) (for any t) as A is changed



Sensitivities

(Local) Sensitivity: partial derivative of some quantity of interest with respect to a
parameter

In our setting, we will want to calculate sensitivities of the state variables with
respect to parameters...

I
... e.g.if y(t) = I(t), we would need to calculate g—l(t) and 8—(t)

oy

How do we calculate these? If we had a formula for /(t), this would be easy...
... but we don’t

Instead we have to use the sensitivity equations



Sensitivity Equations

Sensitivities: partial derivs of state variables with respect to params, e.g. (01/07)(t)

d
For &% — f(x,t;0) (1), where x and fare m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

T
9 (t) of the states with respect to
i

parameter O; by differentiating both sides of (1) with respect to the parameter,
applying the chain rule, and switching the order of d/dt and d/d, on the left side:

We can find the vector of sensitivities

d Oz _ of Oz n of (2) : sensitivity equations

with initial conditions 8;3' (0) = O

(provided 0; is a pure parameter, not an initial condition--- see later)



Sensitivity Equations

Sensitivities: partial derivs of state variables with respect to params, e.g. (01/07)(t)

d
For &% — f(x,t;0) (1), where x and fare m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

T
9 (t) of the states with respect to
i

parameter O; by differentiating both sides of (1) with respect to the parameter,
applying the chain rule, and switching the order of d/dt and d/d, on the left side:

We can find the vector of sensitivities

d Oz _ of Oz n of (2) : sensitivity equations

with initial conditions O (O)
00,

Why do we need the
chain rule? Because

solution x(t) depends on
(provided O; is a pure parameter, not an initial conditig parameter

=0,,




Sensitivity Equations

Sensitivities: partial derivs of state variables with respect to params, e.g. (01/07)(t)

d
For &% — f(x,t;0) (1), where x and fare m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

T
9 (t) of the states with respect to
i

parameter O; by differentiating both sides of (1) with respect to the parameter,
applying the chain rule, and switching the order of d/dt and d/d, on the left side:

We can find the vector of sensitivities

da Ox _ of Oz 1 of (2) : sensitivity equations
with initial conditions 0% 0) = 0 Why are these zero?
8(9@( ) = O - Initial conditions don’t
depend on parameter

(provided 0; is a pure parameter, not an initial conditic value




Sensitivity Equations

Sensitivities: partial derivs of state variables with respect to params, e.g. (01/07)(t)

d
For &% — f(x,t;0) (1), where x and fare m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

T
9 (t) of the states with respect to
i

parameter O; by differentiating both sides of (1) with respect to the parameter,
applying the chain rule, and switching the order of d/dt and d/d0; on the left side:

We can find the vector of sensitivities

The matrix Of is the Jacobian matrix

Or
i Or _ 0f oz i of (2) :{ . differentiate RHS of ODE w.rt. state vars.

with initial conditions O of is derivative of RHS w.r.t. parameter

This is a generalization of linear stability

(provided 0; is a pure parameter, not an analysis




Sensitivity Equations

Sensitivities: partial derivs of state variables with respect to params, e.g. (01/07)(t)

For Ccli_:; = f(z,t;0) (1), where x and f are m dimensional (m state variables),

and 0 is a p dimensional vector of parameters

L : x d or O0f Ox Of
Th tivit t f — —
e sensitivity equations for T (t) are 790, ~ 0z 00, + 20:
N L. Or o
with initial conditions BT (0) = 0y,

1. Sensitivity eqns for different states with respect to a given parameter are coupled

2. Sensitivity egns across different parameters are not coupled...
... SO can arrange sensitivities with respect to different parameters into a matrix



Sensitivity Equations

For d_x — f(z,t;0) (1) , where x and f are m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

the m by p matrix of sensitivities, %(t) , satisfies the ODE system

dox _0fdr  0f
o9 ~ dx a6 09

(2)

with initial conditions %(O) = Omxp

Equations (2) are the sensitivity equations for the system

Sensitivity matrix: Sensitivities of different states with respect to a given parameter
are arranged in a single column, different columns depict sensitivities with respect
to different parameters



Sensitivity Equations

For 47 = f(z,t;0) (1) , where x and f are m dimensional (m state variables),

dt and O is a p dimensional vector of parameters

the m by p matrix of sensitivities, %(t) , satisfies the ODE system
dor Ofoxr Of

T 2
3190 9500 00 2)

with initial conditions %(O) = Omxp

Equations (2) are the sensitivity equations for the system

The Jacobian matrix g depends on the state variables, so the sensitivity equations (2)
T

[a linear system of ODEs] must be solved simultaneously with the governing equations (1)




Sensitivities with Respect to Initial Conditions?

If an initial condition is unknown, we could include it as one of the quantities to
be estimated using least squares

Everything goes as before, except that sensitivity equations are a little different if
you are looking at sensitivities with respect to an initial condition

d Ox Of Ox We don’t have that second term on the right side
e = T because the equations right hand sides of our

dt 8‘93' Ox 893' model don’t involve initial conditions

Ox (O) — e. Unit vector with 1 in j’th place, 0 elsewhere

89]- J Derivative of initial condition i with respect to
initial condition i is one, zero with respect to other
initial conditions

So, we now know how to calculate sensitivities with respect to either parameters
or initial conditions; we can calculate both together



Sensitivity Equations for Logistic Growth Model

Because we have an analytic solution of the logistic growth model

%Zry( —%); y(0) = yo

We can calculate the sensitivities of y(t) with respect to K, r and y, using
calculus

But we could also calculate those three sensitivities using the sensitivity
equations method... and check that the two methods give the same answer!

Next slide outlines one of those calculations, for 8y/87“



Sensitivity Equations for Logistic Growth Model

Let’s set up sensitivity equation for ay/ar , translating from general notation

General Notation Notation of our problem
dz dy ( y )
_— i —_— T —_— —
At f(x,t;0) dt Yy K

IIXII is Ily”, and Ile” iS II,JI’ Ilf” is ry(l_y/K)

i@_@f@a}+8f i@y:8f8y+g
dt 00  O0x 00 = 06 dt or Oy Or  Or

Calculating of/dy and of/dr, and substituting:

o)

Have to integrate a two dimensional system, with states y and Qy/0r , with initial
value of sensitivity =0



Derivation of the Sensitivity Equations for the SIR Model
(Appendix of Capaldi et al. 2012)

We have dS/dt=-[SI/N
dl/dt = BSI/N -yl

S
e s : _ 0x ap
The four sensitivities, arranged in a matrix: -1 a
p
9_(dS/dt) 2(dS/dt _
Jacobian: %=](5,1)= aS( J) 31( /dr) =( BI/N
dx 2 (dl/di) 2(dl/dr) BI/N
Derivative of right hand sides ) (dS) ) (dS)
of differential equations of _| oB\dr] ay\dt
with respect to parameters 90 i(ﬂ) i(ﬂ)
ap\dt dy \ dt

-BS/N
BS/N -y

SI/N -I

_SI/N 0 ]



Derivation of the Sensitivity Equations for the SIR Model
(Appendix of Capaldi et al. 2012)

Shorthand notation

We have dS/dt = _ﬁSI/N for sensitivities
dl/dt = BSI/N -yI /
[AYENNY
d 0 d
The four sensitivities, arranged in a matrix: £ = a/j aj =[ zl Zz ]
B oy T
9_(dS/dt) 2(dS/d _ _
Jacobian: %=‘](S’[)= 35( fi) 31( Jd) =( BI/N  -BS/N
0x 2 (dl/di) 2(dl/dr) BI/N  BS/N -y
Derivative of right hand sides ) (dS) ) (dS)
of differential equations of _| ap\ar) oy\ar) | | =SI/N 0
with respect to parameters 96 i(ﬂ) i(ﬂ) SI/N -1
ap\dt dy \ dt




Derivation of the Sensitivity Equations for the SIR Model
(Appendix of Capaldi et al. 2012)

Putting this all into sensitivity equations (2):

af o o | (BN BN N 0 o0 ),
dt\ ¢3 ¢4 BI/N BS/N-y )| ¢3 ¢4

Four sensitivity equations, arranged in matrix form

~SI/N 0
SI/N -I



Derivation of the Sensitivity Equations for the SIR Model
(Appendix of Capaldi et al. 2012)

Putting this all into sensitivity equations (2):

d

dt

Four sensitivity equations, arranged in matrix form

|

A

¢3

)
P4

i

_BI/N -BS/N

BI/N  BS/N -y

|

0]
¢3

)
P4

M

_SI/N

SI/N

)

Notice for this 2D system, the equations for d5/0p (aka ¢,) and 31/0f3 (aka ¢;)
are coupled, so must be solved together [similarly for the two sensitivities wrt y]



Derivation of the Sensitivity Equations for the SIR Model
(Appendix of Capaldi et al. 2012)

Putting this all into sensitivity equations (2):

af o o | (BN BN N 0 o0 ),
dt\ ¢3 ¢4 BI/N BS/N-y )| ¢3 ¢4

Four sensitivity equations, arranged in matrix form

~SI/N 0
SI/N -I

Notice for this 2D system, the equations for d5/0p (aka ¢,) and 31/0f3 (aka ¢;)
are coupled, so must be solved together

As mentioned previously, these have to be solved simultaneously with the original

model equations
dS/dt =—BSI/N
dl/dt = BSI/N -yl

Initial conditions for the sensitivities: all four equal zeroatt=0

[at t=0, all state variables equal their initial values. No dependence of this on
the parameters, so those four partial derivatives are zero.]



Behavior of the Sensitivity Equations

Capaldi et al. 2012: plotted curves of 0//d3 (solid) and 0//dy (dashed)
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FIGURE 3. Sensitivities of I(t) (i.e., prevalence) with respect to the
model parameters [ (solid curves) and «y (dashed curves) are shown
on the upper panels of the graphs for a) Ry = 1.2, b) Ry = 3 and ¢)
Ry = 10. The lower panel of each graph displays the corresponding
prevalence-time curve. The initial conditions of the SIR model were
So = 9900, Iy = 100, with N = 10,000 and v was taken equal to
one, so § = Ry.



Non-ldentifiability of Parameters

Capaldi et al. 2012 curves of 01/d[3 (solid) and 01/dy (dashed) for Ry=1.2

(a)
The two sensitivity curves are almost mirror images

of each other...
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500 Increasing 3 by a small amount has more or less the
exact opposite effect on I(t) as does increasing y by

that small amount...

Sensitivity
(e}

-500

...S0 we can get an almost identical model fit if we
increase 3 and y by the same amount, making it
difficult to estimate the two separately
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Correlations between parameter estimates

If we were to look at the sum of squares function for this situation:

(a)
1.40

Notice elliptical-shaped contours 130
near the minimum point:

. 1.20

SS varies rapidly parallel to the minor axis
SS varies slowly parallel to the major axis, 110

It’s easy to locate the minimum point in one direction, difficult in the other

In this case, we can easily estimate the ratio of /y, but it’s more difficult to
estimate their separate values

This is linked to the notion of identifiability : whether one can separately estimate
different parameters of the model



Diagnostic Plots

Statistical model assumed that errors (residuals) were independent and
identically distributed

Check this by plotting residuals, both against time and against predicted value
You do not want to see clear patterns in these plots

e.g. two plots of residuals vs time from Cintron-Arias et al. (2009):
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Clear temporal pattern in residuals/time plot in (a) suggests systematic problem
with the model fit, e.g. model mis-specification



Diagnostic Plots

Plots of residuals vs model prediction should not show a pattern

e.g. from Banks et al. 2009
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In first panel, magnitude of observation errors clearly increases with model

prediction (or size of observation), violating the assumptions of the statistical
model

In such cases, we should use weighted least squares (see, e.g., Banks et al. 2009)



Comparing Fits of Different Models

Could fit an SEIR model to our outbreak data
involves one additional parameter

Which would fit better: SIR or SEIR model?

SIR model is special case (c—0) of the SEIR model, so SEIR model is
guaranteed to be able to fit better

In general, more flexible models (more parameters) are able to better fit a given
dataset... but can be prone to overfitting data

[e.g. if you have n points on an x-y plot, can find an n-1 degree polynomial that
goes exactly through all points]

“With four parameters | can fit an elephant, and with five | can make him
wiggle his trunk” (attributed to John von Neumann)

Information criteria (e.g. Akaike Information Criterion, AIC) balance goodness of fit
vs model complexity, penalizing models with more fitted parameters

Should have many more data points than parameters to be fitted!



Limitations of the least-squares approach

Important point: the statistical model used here assumes that observation noise is
the only source of error

In reality:

1. The disease process is stochastic. This uncertainty will propagate through the
process, potentially increasing over time

There are approaches that can account for “process noise”
(e.g particle filter)

2. Model mis-specification. Unlikely that we have exactly the right model.

277

Diagnostic plots would likely indicate issues...



A Final Point

Just because a model provides a “good” fit to data does not mean that the model
correctly characterizes the processes governing a system

a model can fit, but for the wrong reasons
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