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Aims of this Practical

Learn about simple epidemic model, how it behaves and how to simulate it

Derive sensitivity equations for the model

Fit the model to data from an outbreak, estimating model parameters

Obtain measures of uncertainty for these estimated parameters



Aims of this Practical

Learn about simple epidemic model, how it behaves and how to simulate it
simulating differential equation models in MATLAB

Derive sensitivity equations for the model

Fit the model to data from an outbreak, estimating model parameters
minimizing a function in MATLAB

Obtain measures of uncertainty for these estimated parameters



SIR Model for Spread of Infection

Compartmental model: Susceptibles, Infectives, Recovereds

infection

lgnore births and deaths (e.g. short-lived outbreak)

-

recovery

-

dS/dt = —BSI/N
dl/dt = BSI/N — ylI
dR/dt = y I

“Standard incidence” term BSI/N B : “transmission parameter”
“well-mixed” population

Assume constant per-capita recovery rate of y

1/y is average duration of infectiousness

Note: S+ /+ R = N (constant), so need only worry about S and /



Behavior of SIR Model

Behavior is governed by the value of the ratio R, = B/y

Outbreak can occur if Ry >1, cannot occur if Ry < 1

R, > 1 plot: o
an0
500 |
B=1,v=0.2, N=1000 o
S$(0)=999,/(0)=1 '
600 | \
500 | !:I
5(t) : dashed line a0l .:#:
I(t) : solid line a0l .
200 b I.I"I |
100 ,
P — ' ~4— ._:-______——_—...._ ___________




Behavior of SIR Model

Behavior is governed by the value of the ratio R, = B/y

Outbreak can occur if Ry >1, cannot occur if Ry < 1
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Simple Analysis of SIR Model in Terms of R,

Consider dl/dt % = BSI/N —~I
_ (85
= (55 -1)r
=y (Ro{S/N} - 1) T (*)

per-capita transmission maximized when S= N :

dl
— =~v(Rg—1)1
dt 7( 0 )

| increases if R, >1, decreases if Ry < 1

R, : basic reproductive number = B x1/y = x(av. duration of infection)

average number of secondary infections caused by an infectious individual
when the population is almost entirely susceptible



Epidemiological Importance of R,

Can control infection if we can reduce R, ( =B/y ) below one
(e.g. reduce B or increase v)

Alternatively, from (*) on previous slide, if we can reduce S/N below 1/R,

e.g. vaccinate p. = 1—-1/R, or more of the population

Control is more difficult for a highly infectious agent (e.g. measles, with R;= 15-18 )
than for a less infectious agent (e.g. smallpox with Ry = 5-7)

Critical for epidemiologists to estimate R, (i.e. B and y), preferably also getting
some idea of reliability of estimate(s)

Typical method used: fit model to some dataset



BRITISH MEDICAL JOURNAL 4 MARCH 1978

EPIDEMIOLOGY

Influenza in a boarding school

The following notes are compiled by the Communi-
cable Disease Survetllance Centre (Public Health
Laboratory Service) and the Communicable
Diseases (Scotland) Unit from reports submitted
by microbiological laboratories, community
physicians, and environmental health officers.

During January an epidemic of influenza
occurred in a boarding school in the north of
England. A total of 763 boys between the ages
of 10 and 18 were at risk, all except 30 being
full boarders; the staff were from the surround-
ing villages. There were 113 boys between the
ages of 10 and 13 in the junior house, while
the rest were divided into 10 houses of about
60 boys each.

The Data
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Fitting the SIR Model to Data

We shall take the “confined to bed” time series N
and view it as the observed trajectory of / (t) 300 ; o=-srsse--0 Convalescent

14 data points, but we shall imagine that the first
one provides us with the true initial condition, leaving
us with 13 data points

N =763, 5(0) =760, /(0) =3

Number of cases

Seek the values of 3 and y that provide the
“best fit” to the data

January February

“Best fit” in the sense of minimizing the sum of the squared errors
(“error sum of squares”):

F(ﬁ, ,7) _ Z {Iobserved (tz) __ predicted (tz’§ 67 7)}

2



Quick Start... Depending on Whether You Have Already Used
MATLAB to Simulate ODEs and to Minimize a Function

1. Write a function that simulates SIR model [slides 12-15]
2. Write a function that takes a vector pars=[beta, gamma] asinput,
simulates model for this pair of parameters, compares to data and returns error
sum of squares (see notes on slide 20)
3. Minimize this function to find best-fitting values of beta and gamma

(slides 23-27)
4. Derive sensitivity equations (slides 16,17), implement them in MATLAB (slide
18) and explore their behavior (see notes on slide 19)

5. Use sensitivity equations with asymptotic statistical theory to obtain estimates
of uncertainty in estimated parameters (slides 28,29)



SIR Model : Forward Simulation

Nonlinearity of the transmission term means we cannot find an analytic solution
of the model for S and / in terms of time

Numerically integrate (simulate) model in MATLAB, given a set of parameters and
initial values for Sand /

We shall use the ode45 routine in MATLAB

MATLAB works with vectors, so we shall use the first element (e.g. y (1) ) to
denote S and the second (e.g. y(2) ) to denote /



oded>5

[t,y]=0ded5 (@odefun,tspan,y0,options,pars);

odefun the name of the function that gives the right sides of our differential equations
(replace “odefun” with something more descriptive, but keep “@”)

tspan vector that specifies the interval of times over which to integrate:
tspan = [t _initial, t final]
or a vector of times at which we wish to obtain output :
tspan = [t _initial, t1l, t2, .. , t final]

y0 column vector of initial states (i.e. initial conditions): y0 = [ SO0 ; IO0 ]
options options for the ODE solver, e.g. solution tolerances
use [ ] for no options; see odeset for information on options
pars a vector of parameter values that gets passed to odefun
t (returned) column vector of times at which output is given
y (returned) matrix of numerically calculated values of state variables over time

each row refers to a different time point, each column to a different state variable
e.g.y(1l, :) areinitial states, y(end, :) final states,
y(:,2) isacolumn vector of / values at all times — this is what we want to make an
I(t) vs t plot



odefun

function £ = odefun(t,y,pars)

Function odefun returns the entries of the right sides of the differential equations, f (t,y), as a column
vector

t (scalar) value of time at which to evaluate f
y column vector containing values of state variables
pars a vector of parameter values that gets passed to odefun

function £ = sir rhs(t,y,pars)

f=zeros(2,1); need to return a column vector

beta=pars(1l);
gamma=pars(2);
N=pars(3); could eliminate a number of these
lines if we worked with y(1), pars(1)
S=vy ( etc in the f(1) and f(2) lines

1)
I=y (2

)

f(1)=-beta*S*I/N;
f(2)=beta*S*I/N-gamma*I;
end

_e W




SIR Model Simulation

function sir simulation

beta=1.0;
gamma=1.0/5.0; $ five day infectious period
N=1000.0;

pars=[beta,gamma,N];

tspan=[0,50]; % simulate for 50 days

y0=[999;1]; % one initial infective

[t,y]=oded45(@sir rhs,tspan,y0,[],pars);

plot(t,y(:,2)); % plot prevalence of infection over time
end

function f = sir rhs(t,y,pars)
f=zeros(2,1);
f(l)=-pars(1l)*y(l)*y(2)/pars(3);
f(2)=pars(1)*y(1)*y(2)/pars(3)-pars(2)*y(2);
end



Sensitivity Equations

Sensitivities: partial derivatives of state variables with respect to parameters

e.g. g
10

For — = f(x,t;0) ,wherexand farem dimensional,
and 0 is a p dimensional vector of parameters

the m by p matrix of sensitivities, %(t) , satisfies the ODE system

dor _0fox  0f
At 90 ~ 9z 00 ' 90

with initial conditions %( 0) = Omxp



Sensitivity Equations

Sensitivities: partial derivatives of state variables with respect to parameters

cq. O,
10

For — = f(x,t;0) ,wherexand farem dimensional,
and 0 is a p dimensional vector of parameters

the m by p matrix of sensitivities, %(t) , satisfies the ODE system

dor ofox Of

%%  Ox 00 T OO The matrix g is the Jacobian matrix
ox

0 T :
with initial conditions _:c( 0) = Omxp differentiate RHS of ODE w.r.t. state vars.

00
% is derivative of RHS w.r.t. params
00
Appendix of Capaldi et al. (2012) gives
sensitivity equations for SIR model Banks’s notation :  s(t) = Ox

00




Numerical Implementation of Sensitivity Equations

Need tosolve 4 9% _ 00z 4+ of together with Ccll_f = f(x,t;0)

dt 00  O0x 90 00

In total, that’s mp + m equations

For SIR model with 2 states and 2 parameters of interest : 6 equations/quantities
to track, arranged as a column vector in MATLAB, with entries

v(1) v(2) v(3) v(4) Y (5) v (6)
S / 9S/0B 0S/dy o//0P 01/dy

Your tasks: 1. Work out the sensitivity equations for the SIR model

2. Code up the sensitivity equations (together with the 2 of the
original SIR model) in MATLAB



Behavior of the Sensitivity Equations?

Once you have the sensitivity equations running...
Plot curves of 8//0f3 and d//0y on the same graph

Compare their shapes in the following situations:

1. R, just above one, e.g. R, = 1.2 (take 3=0.24, y=0.2, integrate for 300 time units)
2. Intermediate Ry, e.g. R, =5 (take =1, y=0.2, integrate for 50 time units)

3. Large Ry, e.g. R, =12 (take =2.4, y=0.2, integrate for 50 time units)

Does the plot in case (1) say something interesting about our ability to separately
estimate 3 and y?



Fitting the SIR Model to Data

Two steps:
1. Create function that calculates error sum of squares given values of 3 and y
2. Find values of 3 and y that minimize this function

Step 1 is a simple modification of the code already created to simulate the SIR model

function ESS = error sum of squares(input pars)
beta=input pars(1l);
gamma=input pars(2);

tspan=[0:13]; % this vector has entries 0, 1, 2, ..., 12, 13,
% so we get output for each day

data=[3;6;25;73;222;294;258;237;191;125;69;27;11;4];

N=763;
y0=[760 ; 3];
[t,y]=0oded45(@sir rhs,tspan,y0,[],[beta,gamma,N]);

diff=data-y(:,2); % calculate differences between data and
predictions ESS=sum(diff."2); % square entries of diff ( .A2 operator) and
then sum

end



Fitting the SIR Model to Data

What does the error sum of squares function look like?

Because it’s a function of two variables, it’s relatively easy to visualize, e.g. using a 3D
plot or a contour plot

Might be interesting to look at this before doing minimization...

beta_range=[1:0.05:3];
gamma_range=[0.15:0.025:11];

% set up grid of values
[ GAMMA , BETA ]=meshgrid(gamma range,beta range);
% calculate error sum of squares for each point on grid
for i=1l:numel (beta range)
for j=1l:numel (gamma_ range)
ESS(i,Jj)=error sum of squares([BETA(i,Jj),GAMMA(i,3j)]);
end
end

[o)

% do contour plot, with gamma on horizontal, beta on vertical
figure(l)
contour (GAMMA,BETA,ESS, 20)



Fitting the SIR Model to Data

What does the error sum of squares function look like?

Because it’s a function of two variables, it’s relatively easy to visualize, e.g. using a
3D plot or a contour plot

Might be interesting to look at this before doing minimization...
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Minimizing a Function: fminsearch
Optimization is a big area, with lots of different methods that could be used

We shall use MATLAB’s fminsearch , which implements the Nelder-Mead direct
search simplex algorithm (Nelder & Mead, 1965; see also Walters et al. 1991,
Lagarias et al. 1998)

Worth keeping in mind the difficulties (i.e. things that can and do go wrong) with
minimization, particularly the possibility that a function has multiple local minima

(Our error sum of squares function looks nice, so we wade in without worrying
too much...)



Minimizing a Function: fminsearch
[x,fval]=fminsearch(@func,x0,options,extra pars)

func (pars) is the function whose value is to be minimized
(e.g. ourerror sum of squares)
pars is a p dimensional vector

x0 initial guess for the p dimensional vector of parameters

options contains options for optimization routine (e.g. tolerances,
number of allowed iterations and/or function evaluations)

use [ ] if we want to use defaults; see optimset for more info
extra pars avector of other (fixed) parameters we may wish to pass

Returned values:
X vector of parameters that minimizes function
fval value of function at returned value of x



Example of use of fminsearch

function test minimization
x0=[1,4];

[x,fval]=fminsearch(@simple function,x0)

as I don’'t want to specify options or extra parameters
we can skip those arguments

3
3

end

function f = simple function(pars)

a=pars(1l);
b=pars(2);

f= 2% (a-2)"2+3*(b-3)"2;

%

embarrassingly simple function, whose minimum is at (2,3)
end



Task: Fit SIR Model to Data

Use fminsearch onyour error sum of squares function to find the
best-fitting values of 3 and v and the error sum of squares

Hint for initial guess at parameters: average duration of influenza

infection is about 4 days, and R, might be in the ballpark of 8
alternatively: did you get any idea from the contour plot?

[theta hat,ess]=fminsearch(@error sum of squares,[1,0.2])

Plot data and best fitting curve on the same graph

What is our best guess at the value of R,?



Task: Fit SIR Model to Data

Plot data and best fitting curve on the same graph:

300

250 | ,
200 |
150 b
100 b

a0

What about uncertainty in our estimates of parameters? Bring the statistical
machinery into play...



Uncertainty Estimates for Parameters

Using theory from this morning’s talk, our estimate of the variance-covariance
matrix for the vector of estimated parameters is

~ T

Y = 5 (X<n>(e)

Here,

X (é)) -

&2 is (minimized value of error sum of squares) / (n — p)

n (13) data points, p (2) estimated parameters

) (é) is the n x p matrix of sensitivities, with entries X" (0)i; =

Need sensitivities of / with respect to B and y
at each time point

X" (6) =

(

\

OI(t;;

OI(t1;0)  8I(t1;0)
90, 005
oI (tz;0)  8I(ts;0)
90, 00
OI(tn;0)  OI(tn;0)
90, 00

oI (t1;0)
00,,

oI (t;0)
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Uncertainty Estimates for Parameters

Using theory from this morning’s talk, our estimate of the variance-covariance
matrix for the vector of estimated parameters is

~ T ~\ 1
=62 (x"(0) x™ ()
Here,
&2 is (minimized value of error sum of squares) /11  (because n=13, p = 2)

s (é) is the 13 x 2 matrix of sensitivities: / 01 (t1;6) 91(t1;6)
op 0y

OI(t2;0)  OI(t2;0)
9B 0y

X" (6) =

OI(t13;0)  OI(t13;0)
Need sensitivities of / with respect to B and y \ op ok

at each time point




Uncertainty Estimates for Parameters

Once we have 2, can calculate

SE(B) = V11 SE(R) = vZo» COV(B, y) = Y19

Task: Calculate standard errors for estimates of 3 and y
and corresponding coefficients of variation ( SE/estimate)

Calculate correlation between parameter estimates using p = -

cov(B,4)
SE(5) SE(4)

Qu.: How does uncertainty in of B and y translate into uncertainty of Ry= /y ?
Non-trivial...

approximate result: 7, B - (@)2 Var(f) N Var(§)  2cov(3,9)
70 Bo” Yo? Bovo

A

8

here, 3, and y, are our estimates of 3 and y



Where to Go Next?

Many possible directions..
1. Include uncertainty in initial condition

We took /(0) = 3. Instead estimate /(0) together with 3 and y
(now have 14 data points)

Need to include sensitivity of /(t) with respect to /(0)
theory very similar to parameter sensitivities
see equation 3.62 in Banks’s notes

2. Whatis the appropriate model?

SEIR model? (individuals have some delay before becoming infectious)
SEICR model? (model “confinement to bed”)

Time varying parameters? (e.g. action taken to control spread)

* These models have more parameters... can we estimate them all from

14 data points? identifiability
* More complex models are more flexible, so tend to fit better: How do
we determine if increased fit justifies increased complexity of model?

information criteria
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