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Biomedical systems
GOAL: individualized medicine – designing patient-specific treatment

Model of the disease

ODE
PDE
SDE

Calibration with patient data

ML
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Problems with biomedical model 
calibration
Model complexity

◦ Large number of variables and parameters, no symmetries

◦ Complex or unknown interactions

Data scarcity
◦ Unobserved variables

◦ Insufficient time resolution

◦ Small number of trajectories 

Data inhomogeneity
◦ Variability of parameters across subjects

◦ Multiple subjects combined in one data set

◦ Data aggregation

Quality

QuantityHomogeneity

DATA TRADEOFF



Examples
INFLUENZA BACTERIAL PNEUMONIA

Time courses for 16 human 
volunteers infected by 
Influenza A/Texas/91 (H1N1) 
[Hayden , JAMA, 96]

Data from MF1 mice subjects infected by D39 strain of 
pneumococcus, data are available for various other mice 
and pneumonia strains 
[Kadioglu et al., Inf. and Immun., 2000]:



INFLUENZA

Intranasal infection of 136 Balb/c mice by Influenza virus A/PR/8/34 (H1N1) 
[Toapanta, Ross, Morel]

20 variables, 97 parameters, ODE model



Dynamical model Data

Error minimization

Parameter estimates
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Traditional modeling



Questions

• Is there a parameter set/model that reproduces the data exactly?

• Is the optimal parameter set unique?

• How sensitive is the optimal parameter set to data, their uncertainty, and 
assumptions about error distribution?

• How well does the model fit the data? Is it even appropriate? Can the model be 
ruled out at the given data uncertainties?

• How large is the region in data space for which the model is appropriate?

• Since the data consist of multiple subjects, is the model appropriate and how do 
we know?

Answer

• Analyze more closely the relation between the system (parameters) and its 
solutions.

• Use probabilistic methods to describe the cohort of subjects or the parameter 
estimation uncertainty



Ensemble model

Distribution describes
◦ Variability of parameters across cohort of subjects

◦ Uncertainty in determination of parameters from noisy data

Ensemble modeling
Deterministic model

Parameters
Mechanisms
Time points 

Trajectory data Solution map

Distribution of data 
Parameters

Distribution of    Mechanisms
Time points 



ODE ensemble model
Initial value problem: 

ሶ𝑥 = 𝑓 𝑥, 𝑎 , 𝑥 0 = 𝑏

Solution: 𝑥 = 𝑥 𝑡; 𝑎, 𝑏

Deterministic solution map: 𝑦 = 𝐹 𝑎 = (𝑥 𝑡1, 𝑎 , … , 𝑥 𝑡𝑛, 𝑎 )

Parameter distribution - random variable 𝐴, density 𝜌(𝑎)

Data distribution - random variable 𝑌 = 𝐹 𝐴 , density 𝜂(𝑦)

Value of a variable at fixed time: 𝑋𝑡 = 𝑥(𝑡; 𝐴)
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𝑦 = (𝑉 1 , … , 𝑉 8 )

𝑎 = (𝑉0, 𝛽, 𝑝, 𝑐, 𝛿)

Influenza model



Constructing ensemble models

Distribution of data Distribution of Parameters

(1) Inverse map of data sample
◦ Requires computation of 𝐹−1, solution of the ODE inverse problem

(2) Direct sampling of parameter distribution
◦ Requires formula for parameter density

Sample of data
{𝑦𝑗}

Sample of Parameters 
{𝑎𝑗}

𝑎𝑗 = 𝐹−1(𝑦𝑗)



ODE models
Initial value problem with matrix parameter 𝐴 : 

ሶ𝑥 = 𝑓 𝑥, 𝐴 , 𝑥 0 = 𝑏

INVERSE PROBLEM: Determine the function 𝑓 . , . and/or parameters 
𝐴, 𝑏 from data about trajectory(ies) 𝑥(. ; 𝐴, 𝑏).

FORWARD PROBLEM
𝑓 . , . , 𝐴, 𝑏 𝑥(. ; 𝐴, 𝑏)

INVERSE PROBLEM



Inverse problem

Mathematical analysis
◦ Existence, uniqueness/identifiability

◦ Robustness (existence/uniqueness on open sets)

◦ Construction of the inverse map (numerical algorithm)

◦ Maximal permissible uncertainty

◦ Prediction uncertainty

𝑓 . , . , 𝐴, 𝑏 𝑥(. ; 𝐴, 𝑏)INVERSE PROBLEM



Existing results on ODE inverse 
problem
Observability theory 

◦ Search for conditions that guarantee identifiability of the system state (initial 
conditions) from observed trajectory (can be extended to parameters)

◦ Kalman (1963) formulated observability conditions for linear dynamical 
systems

◦ Griffith & Kumar (1971), Kou, Elliot, & Tarn (1973) formulated sufficient 
conditions for observability of nonlinear dynamical systems

◦ Identification of analytic systems with 𝑝 parameters requires at most 2𝑝 +
1 observations [Aeyels 1981; Sontag 2002] 

Polynomial systems
◦ Reconstruction of polynomial fields from known algebraic attractors 

[Sverdlove 1980,81]

◦ Analysis of all possible topologically invariant planar quadratic dynamical 
systems [Perko textbook]



Existing results on inverse problem
Algorithms for finding inverse

◦ Numerical simulation combined with nonlinear least squares fitting

◦ Multiple shooting combined with Gauss-Newton minimization [Bock 1983; 
Lee]

◦ Collocation methods using basis function expansion, combined with NLS 
fitting [Varah 1982; Ramsey et al 2007]

◦ Contraction map and ‘collage method’ [Kunze et al. 2004]

◦ Parameter-free approach (using Takens map) [Sauer, Hamilton, …]

◦ Compressed sensing 

Probabilistic approaches
◦ Transformation of measure

◦ Numerical simulation combined with Bayesian inference

◦ Bayesian integration of ODEs [Chkrebtii et al.]



Identifiability from single complete 
trajectory
System: ሶ𝑥 = 𝑓(𝑥, 𝐴)

Initial condition: 𝑥 0 = 𝑏

Solution: 𝑥 𝑡; 𝐴, 𝑏

𝑥 𝑡; 𝐴, 𝑏

𝑥 𝑡; 𝐵, 𝑏

𝐴

𝐵



𝑥 𝑡; 𝐴, 𝑏 = 𝑥 𝑡; 𝐵, 𝑏
𝐴

𝐵

𝐶

𝐷

𝑥 𝑡; 𝐷, 𝑏𝑥 𝑡; 𝐶, 𝑏

𝑥 𝑡; 𝐶, ത𝑏 = 𝑥 𝑡; 𝐷, ത𝑏

𝑥 𝑡; 𝐴, 𝑏 = 𝑥 𝑡; 𝐵, 𝑏
𝐴

𝐵

𝐶

𝐷

𝑥 𝑡; 𝐷, 𝑏𝑥 𝑡; 𝐶, 𝑏

𝑥 𝑡; 𝐶, ത𝑏 = 𝑥 𝑡; 𝐷, ത𝑏



Definitions
System ሶ𝑥 = 𝑓(𝑥, 𝐴) is

Identifiable in Ω ⊆ ℝ𝑛×𝑚 iff for all 𝐴, 𝐵 ∈ Ω with 𝐴 ≠ 𝐵 there exists 
𝑏 ∈ ℝ𝑛 such that 𝑥 𝑡; 𝐴, 𝑏 ≠ 𝑥(𝑡; 𝐵, 𝑏) for some 𝑡 > 0.

Identifiable in Ω ⊆ ℝ𝑛×𝑚 from 𝑏 iff for all 𝐴, 𝐵 ∈ Ω with 𝐴 ≠ 𝐵 it holds 
that 𝑥 𝑡; 𝐴, 𝑏 ≠ 𝑥(𝑡; 𝐵, 𝑏) for some 𝑡 > 0.

Identifiable in Ω ⊆ ℝ𝑛×𝑚 from 𝑥 𝑡; 𝐴, 𝑏 iff there exists no 𝐵 ∈ Ω with
𝐴 ≠ 𝐵 such that 𝑥 𝑡; 𝐴, 𝑏 = 𝑥(𝑡; 𝐵, 𝑏) for all 𝑡.

Unconditionally identifiable in Ω ⊆ ℝ𝑛×𝑚 iff for all 𝐴, 𝐵 ∈ Ω with 𝐴 ≠
𝐵 and all 𝑏 ∈ ℝ𝑛 it holds that 𝑥 𝑡; 𝐴, 𝑏 ≠ 𝑥(𝑡; 𝐵, 𝑏) for some 𝑡 > 0.



Results for linear system

Theorem [SRS14]: 
System ሶ𝑥 = 𝐴𝑥 is identifiable in ℝ𝑛×𝑚 from 𝑥 𝑡; 𝐴, 𝑏 if and only if the 
orbit 𝛾(𝐴, 𝑏) = {𝑥 𝑡; 𝐴, 𝑏 , 𝑡 ∈ ℝ} is not confined to a proper subspace 
of ℝ𝑛. 

Proof sketch: By theorem of Astrom, identifiability from b is equivalent to 
det[𝑏 𝐴𝑏 … |𝐴𝑛−1𝑏] ≠ 0 . It suffices to show that this condition is equivalent to 
the orbit 𝛾(𝐴, 𝑏) not being confined to a proper subspace of ℝ𝑛. 



[SRS14]

Red trajectories are confined to linear subspaces of the flux space => they do not identify 
the system

Examples: Inverse problem solution is unique only for certain trajectories/data.

ሶ𝑥
ሶ𝑦
ሶ𝑧
=

−0.2 −1 0
1 −0.2 0
0 0 −0.3

𝑥
𝑦
𝑧

ሶ𝑥
ሶ𝑦
ሶ𝑧
=

−1 −3 2
0 −4 2
0 0 −2

𝑥
𝑦
𝑧

ሶ𝑥
ሶ𝑦
ሶ𝑧
=

−1 1 0
0 −1 0
0 0 −1

𝑥
𝑦
𝑧

𝑥𝑦

𝑧



Result for linear-in-parameter system

Trajectory is confined => System is not identifiable! 
System with the same trajectory:
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Theorem [SRS14]: 
System ሶ𝑥 = 𝐴𝑔(𝑥) is identifiable in ℝ𝑛×𝑚 from 𝑥 𝑡; 𝐴, 𝑏 if and only if 
the image 𝑔(𝛾(𝐴, 𝑏)) of the orbit 𝛾(𝐴, 𝑏) is not confined to a proper 
subspace of ℝ𝑚.

𝑥

𝑥𝑦

𝑦



Result for confined trajectory

Theorem [SRS14]:
Suppose that 𝑉 is a proper linear subspace ℝ𝑛 invariant under A. The following 
are equivalent
(i) 𝑉 is the minimal A-invariant subspace such that 𝑏 ∈ 𝑉 .
(ii) The orbit of 𝑥(𝑡; 𝐴, 𝑏) is not confined to a proper subspace of 𝑉
(iii) There exists no 𝐵 ∈ ℝ𝑛×𝑛 such that 𝐵|𝑉 ≠ 𝐴|𝑉 and 𝑥 𝑡; 𝐴, 𝑏 = 𝑥(𝑡; 𝐵, 𝑏).
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Numerical determination of 
confinement
Numerical errors (roundoff) can obscure the confinement of trajectory 
represented as a collection of data points

Use Singular Value Decomposition

𝑋 = 𝑈𝑆𝑉𝑇

◦ Dimension of confining subspace = 𝑟𝑎𝑛𝑘 𝑋 = #{𝑆𝑗𝑗 > 0}

◦ Numerical rank:     𝑟𝑎𝑛𝑘𝑛𝑢𝑚 𝑋 = #{𝑆𝑗𝑗/max
𝑗

𝑆𝑗𝑗 > 𝜀𝑡𝑜𝑙}



Identification from discrete data on a 
single trajectory
Discrete data: 𝑋 = 𝑥0, 𝑥1, … , 𝑥𝑛 , 𝑥𝑖 = 𝑥(𝑡𝑖; 𝐴, 𝑏)

Identifiability from complete trajectory does not imply identifiability 
from discrete data.
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Identification from discrete data on a 
single trajectory
GOAL: 

Partition the data space into domains in which 
◦ the system is identifiable from data

◦ the system is robustly identifiable (on an open neighborhood)

◦ the system is identifiable to within countable number of alternatives

◦ the system has a continuous family of compatible parameters

◦ there is no parameter set corresponding to the data

◦ the system has a specific dynamical behavior (stable, saddle, …)



Inverse map for linear systems
Discrete data (uniformly spaced):   𝑑 = (𝑥0, 𝑥1, … , 𝑥𝑛)

Solution map: 𝑥𝑘 = 𝑒𝐴𝑘𝑏

ALGORITHM

Step 1: Let 𝑋𝑘 = 𝑥𝑘 𝑥𝑘+1 … 𝑥𝑛+𝑘−1 , 𝑘 = 0,1

Step 2: Compute Φ = 𝑋1𝑋0
−1

Step 3: Solve 𝑒𝐴 = Φ

Existence and uniqueness of 𝐴 derives from conditions for existence 
and uniqueness of real matrix logarithm [Culver 1966].



Robust existence & uniqueness

𝑑𝐴 Φ

𝑈



Robust existence & uniqueness

Theorem [SRS17]: There exists an open set 𝑈 ⊂ ℝ𝑛×𝑛 containing Φ such that 
for any Ψ ∈ 𝑈 the equation 𝑒𝐴 = Ψ has a solution 𝐴 ∈ ℝ𝑛×𝑛 iff
(a) {𝑥0, 𝑥1, … , 𝑥𝑛−1} are linearly independent and 
(b) Φ has only positive real or complex eigenvalues.

Theorem [SRS17]: There exists an open set 𝑈 ⊂ ℝ𝑛×𝑛 containing Φ such that 
for any Ψ ∈ 𝑈 the equation 𝑒𝐴 = Ψ has a unique solution 𝐴 ∈ ℝ𝑛×𝑛 iff
(a) {𝑥0, 𝑥1, … , 𝑥𝑛−1} are linearly independent and 
(b) Φ has 𝑛 distinct positive real eigenvalues.

Theorem [SRS17]: There exists an open set 𝑈 ⊂ ℝ𝑛×𝑛 containing Φ such that 
for any Ψ ∈ 𝑈 the equation 𝑒𝐴 = Ψ does not have a solution 𝐴 ∈ ℝ𝑛×𝑛 iff
(a) {𝑥0, 𝑥1, … , 𝑥𝑛−1} are linearly independent and 
(b) Φ has at least one negative real eigenvalue of odd multiplicity.



Region of unique inverses

Let

Eigenvalues of Φ are determined by 𝑦 = 𝑋0
−1𝑥𝑛

Conditions on y that guarantee positive real eigenvalues have been worked out for 
arbitrary dimension [Gantmacher; Yang] 

Example in 2D (regions of data which give unique inverse)

Φ = 𝑋0
−1Φ𝑋0 = 𝑋0

−1𝑋1

Φ =

0 0 0 ⋯ 𝑦1
1 0 0 ⋯ 𝑦2
0 1 0 ⋯ 𝑦3
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑦𝑛



𝑥1

𝑥0

== det,tr DT

𝑥2

Regions of stability for 2x2 systems

𝑥2
𝑥2



Numerical error of identification
Exact formula

Φ = 𝑋1𝑋0
−1

Numerical sensitivity of the inverse to errors in the data.

𝛿Φ

Φ
≤ 𝜅(𝑋0)

𝛿𝑋0
𝑋0

+
𝛿𝑋1
𝑋1

◦ Here ∙ is any matrix norm and 𝜅 𝐶 = 𝐶 𝐶−1 is the condition number 
of the matrix 𝐶.

◦ Note that collinearity of vectors in 𝑋0 leads to a loss of accuracy.
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Identification from non-uniformly 
spaced data

Discrete data (non-uniformly spaced)

Lemma: Let 𝑥𝑗𝑘 = Φ𝑗𝑘𝑏 where 𝑗𝑘 are integers such that 0 = 𝑗0 < 𝑗1 < ⋯ < 𝑗𝑛. 

Let 𝑋0 = 𝑥𝑗0 , 𝑥𝑗1 , … , 𝑥𝑗𝑛−1 be invertible. Let 𝑦 = 𝑋0
−1𝑥𝑗𝑛 be a vector with 

entries 𝑦1, 𝑦2, … 𝑦𝑛. If Φ is diagonalizable, then 𝜆 is an eigenvalue of Φ only if it 
is a root of the polynomial

𝑝𝑦 𝜆 = 𝜆𝑗𝑛 − 𝑦𝑛𝜆
𝑗𝑛−1 −⋯− 𝑦2𝜆

𝑗1 − 𝑦1



Identification from non-uniformly 
spaced data
ALGORITHM

Step 1: Get 𝑦 = 𝑋0
−1𝑥𝑗𝑛

Step 2: Find all roots of 𝑝𝑦 𝜆

Step 3: Choose a combination of n distinct roots and form Φ.

Step 4: Compute vectors 𝑧𝑗0 , 𝑧𝑗1 , … , 𝑧𝑗𝑛−1 as 𝑧𝑗0 = 𝑒1 and 𝑧𝑗𝑘+1 =
Φ𝑗𝑘+1−𝑗𝑘𝑧𝑗𝑘.

Step 5: Compute Φ = 𝑃−1Φ𝑃 where P is such that 𝑃𝑥𝑗𝑘 = 𝑧𝑗𝑘 for 𝑘 =
0,1, … , 𝑛 − 1.

Step 6: Solve 𝑒𝐴 = Φ .

Note: The variety of choices for Φ may lead to non-uniqueness of parameter 
estimates.



Uncertainty analysis
Uncertain data: ሚ𝑑 = (𝑥0, 𝑥1, … , 𝑥𝑛)

Bounds on uncertainty: 𝐶 𝑑, 𝜀 = { ሚ𝑑:max
𝑖,𝑗

Δ𝑥𝑖,𝑗 < 𝜀}

Neighborhood 𝐶 𝑑, 𝜀 is called permissible for property P iff P is shared 
by all systems corresponding to the data ሚ𝑑 ∈ 𝐶 𝑑, 𝜀 .

Value 𝜀𝑃 > 0 is maximal permissible uncertainty for property P iff
𝐶 𝑑, 𝜀 is permissible for P for all 0 < ε < 𝜀𝑃, and 𝐶 𝑑, ǁ𝜀 is not 
permissible for P for any ǁ𝜀 > 𝜀𝑃

P can be
◦ Existence of inverse (unique or nonunique)

◦ Unique inverse

◦ Unique stable inverse

𝜀

𝑑

𝐶 𝑑, 𝜀



Results for linear systems

Theorem (lower bound): Let d be such that Φ has n distinct positive eigenvalues  

𝜆1, 𝜆2, … , 𝜆𝑛. Let 𝑚1 =
1

2
min
𝑖<𝑗

𝜆𝑖 − 𝜆𝑗 , 𝑚1 = min
𝑖
𝜆𝑖, and 

𝛿𝑈 = min{𝑚1, 𝑚2}. If 0 < 𝜀 ≤ 𝜀𝑈 where

𝜀𝑈 =
𝛿𝑈

𝑛(𝛿𝑈 + 1 + Λ ) 𝑆−1 𝑋0
−1𝑆

with Φ = 𝑆Λ𝑆−1, then for any ሚ𝑑 ∈ 𝐶(𝑑, 𝜀), ෩Φ has n distinct positive 
eigenvalues. 



Results for linear systems

Theorem (upper bound): Let d be such that Φ has n distinct positive 
eigenvalues  𝜆1, 𝜆2, … , 𝜆𝑛, and let y be the last column vector of the companion 

matrix form Φ of Φ. The smallest neighborhood 𝐶(𝑑, 𝜀) that contains data ሚ𝑑 for 

which companion matrix ෩Φ has last column 𝑦 has 𝜀 = 𝜀𝑈 where

𝜀𝑈 =
𝑋0(𝑦 − 𝑦) ∞

𝑦 1 + 1



Permissible data uncertainty: Amount of measurement error that can be tolerated 
without altering inference qualitatively

Upper and lower bounds 
for linear systems.

ሶ𝑥 = 𝐴𝑥, 𝑥 0 = 𝑏

[SRS17]



Prediction Uncertainty: In high dimensions inverse problem solution is very sensitive to 
small changes in data.

∆𝑥𝑛 =0.0049

∆𝑥𝑛 =0.0295 ∆𝑥𝑛 =0.0005

[SRS17]



SUMMARY
Existence and identifiability analysis provides regions on which the 
inverse problem for ODEs is well posed

Additional solution attributes (e.g., stability, spirality) can be included

OPEN PROBLEMS

Existence of inverse for linear-in-parameter systems

Maximal permissible uncertainty for linear-in-parameter systems



ODE Models with random effects
Initial value problem: ሶ𝑥 = 𝑓(𝑥, 𝑎), 𝑥 0 = 𝑏

Solution: 𝑥 𝑡; 𝑎, 𝑏 ∈ 𝐶1 ℝ𝑛

Data vector: 𝑦 = 𝐻(𝑥 𝑡0 , 𝑥 𝑡1 , … , 𝑥 𝑡𝑛 )

Solution map:             𝒚 = 𝑭 𝒂 invertible for 𝒚 ∈ 𝑪(ഥ𝒚, 𝜺)

Random parameter model (RPM): 

𝑌 = 𝐹 𝐴 𝐴 is a r. v. with density 𝜌 𝑎

Random measurement error model (REM): 

𝑌 = 𝐹 𝑎 + 𝐺 𝐺 is a r. v. with density 𝛾(𝑔)



Random-parameter model
𝑌 = 𝐹 𝐴

Inverse problem: Find parameter density 𝜌(𝑎) from the knowledge of 
data density 𝜂 𝑦 and 𝐹.

Change of variables formula: for any set Γ

න
Γ

𝜌 𝑎 𝑑𝑎 = න
𝐹(Γ)

𝜂 𝑦 𝑑𝑦 = න
Γ

𝜂 𝐹 𝑎 𝐽 𝑎 𝑑𝑎

𝐽 𝑎 = | det𝐷𝑎𝐹 𝑎 |

Parameter density: 𝜌 𝑎 = 𝜂 𝐹 𝑎 𝐽(𝑎)

Distribution of parameters: represents subject variability

𝐹(Γ)
Γ



Computational aspects
Jacobian is expensive to compute.

Methods for computing 𝐽 𝑎
◦ Exact formula for linear models

For 2 × 2 diagonalizable matrix 𝐴 = 𝑊𝑀𝑊−1:

𝐽 𝑎 =
𝑏2𝑤11 − 𝑏1𝑤21

2 𝑏2𝑤12 − 𝑏2𝑤22
2𝑒𝜇1+𝜇2 𝑒𝜇1 − 𝑒𝜇2 4

det𝑊 2 𝜇1 − 𝜇2
2

◦ Numerical differentiation
𝜕𝐹

𝜕𝑎𝑗
ො𝑎 ≈

1

𝜀
(𝐹 ො𝑎 + 𝜀𝑒𝑗 − 𝐹 ො𝑎 )

Requires n additional integrations of the system in each step

[SSZR19]



Computational aspects
◦ Numerical integration of the first variational equations (sensitivity 

coefficients) for ODE models

Let 𝑠𝑎𝑗(𝑡) =
𝜕𝑥(𝑡;𝑎,𝑏)

𝜕𝑎𝑗
, 𝑠𝑏𝑗(𝑡) =

𝜕𝑥(𝑡;𝑎,𝑏)

𝜕𝑏𝑗

ሶ𝑥 = 𝑓 𝑥, 𝑎 𝑥 0 = 𝑏

ሶ𝑠𝑎𝑗 𝑡 = ቤ
𝜕𝑓 𝑧, 𝑎

𝜕𝑧
𝑧=𝑥 𝑡

𝑠𝑎𝑗 𝑡 + อ
𝜕𝑓 𝑧, 𝑎

𝜕𝑎𝑗
𝑧=𝑥 𝑡

𝑠𝑎𝑗(0) = 0

ሶ𝑠𝑏𝑗 𝑡 = ቤ
𝜕𝑓 𝑧, 𝑎

𝜕𝑧
𝑧=𝑥 𝑡

𝑠𝑏𝑗 𝑡 𝑠𝑏𝑗(0) = 𝑒𝑗

Dimension of the ODE system increases from 𝑛 to 𝑛(𝑝 + 𝑛 + 1)

[SSZR19]



Computational aspects
◦ Broyden’s method (rank-1 update)

𝐷𝑎𝐹 ො𝑎 ≈ 𝐷𝑎𝐹 𝑎𝑘 +
𝐹 ො𝑎 − 𝐹 𝑎𝑘 − 𝐷𝑎𝐹 𝑎𝑘 Δ𝑎𝑘

Δ𝑎𝑘 𝑇Δ𝑎𝑘
Δ𝑎𝑘

𝑇

Only one computation of 𝐹 ො𝑎 (integration of the system) needed at every 
step 

Update every 10 computations keeps relative error of 𝐷𝑎𝐹 ො𝑎 below 4%

Accuracy of the posterior is lower than the accuracy of Jacobian

[SSZR19]



Examples
Common problem:

◦ Jacobian calculation is expensive, so can we replace 𝐽(𝑎) by a simpler 
distribution 𝜋(𝑎)?

𝜌(𝑎) 𝜂(𝑦)



Linear dynamical system, uniform data distribution 𝑈( ҧ𝑥𝑖𝑗 − 𝜀, ҧ𝑥𝑖𝑗 + 𝜀)
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Linear dynamical system, uniform data distribution 𝑈( ҧ𝑥𝑖𝑗 − 𝜀, ҧ𝑥𝑖𝑗 + 𝜀)

𝑀J

Broyden’s method (rank-1 update)

𝐷𝑎𝐹 ො𝑎 ≈ 𝐷𝑎𝐹 𝑎𝑘 +
𝐹 ො𝑎 − 𝐹 𝑎𝑘 − 𝐷𝑎𝐹 𝑎𝑘 Δ𝑎𝑘

Δ𝑎𝑘 𝑇Δ𝑎𝑘
Δ𝑎𝑘

𝑇

• 𝐷𝑎𝐹 ො𝑎 recomputed exactly every N steps (101, 11, 2)
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Jacobian alternatives sometimes work well

[SSZR19]
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−1

[SSZR19]

Narrow data distribution, 
all 𝜋(𝑎) work well



Examples
Common problem:

◦ Can 𝜂 𝑦 be approximated by aggregate Gaussian density 𝜂 𝑦 ?

𝜌(𝑎) 𝜂(𝑦)

𝜌(𝑎) 𝜂(𝑦)



Linear dynamical system, Gaussian parameter distribution, aggregate Gaussian data distribution.
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𝜎2 = 0.25

𝜎2 = 0.17

𝜎2 = 0.07

𝑀R

𝐴

𝑀J

𝑀U

𝐴 is the exact source density, 
𝑀𝜋 is a sample of 𝜌 𝑎 =

𝜂 𝐹 𝑎 𝜋(𝑎)

xx =

[SSZR19]

Only Jacobian produces 
localized distribution



Nonlinear influenza dynamics, Gaussian parameter distribution, aggregate Gaussian data 
distribution

IHVI

HVH

cVrIV





−=

−=

−=







)0.4,0.3,012.0,107.2,104,093.0(),,,,,( 58

00

−==  crHVa

}2,1{=t

𝑀R

𝐴

𝑀J

𝑀U

[SSZR19]



Domain deformation

𝑎1

𝑎2

𝑥1

𝑥2



Summary
• Accurate parameter inference of ensemble models requires 

determination of the domain of invertibility of the solution map and 
the computation of Jacobian

• Further work is required to design efficient computational procedures 
for Jacobian calculations



Random measurement error model
𝑌 = 𝐹 𝑎 + 𝐺

Inverse problem: Find 𝑎 from the knowledge of data 𝐷 = (𝑦1, … , 𝑦𝑁), 
𝐹(𝑎), and the error density 𝛾(𝑔).

Likelihood

𝐿 𝑎 𝑦 = 𝜌 𝑦 𝑎 = 𝛾 𝑔 = 𝛾 𝑦 − 𝐹 𝑎

Bayesian posterior 
𝜌 𝑎 𝑦 ∝ 𝐿 𝑎 𝑦 𝜋 𝑎

◦ Prior 𝜋(𝑎) contains all information about parameters known before data are 
taken into account

Distribution of parameters: represents uncertainty in parameter inference

𝐹 𝑎

𝑦
𝑔



Priors
Uniform prior: 𝜋 𝑎 = 1

Reciprocal prior: 𝜋 𝑎 = ς𝑖 𝑎𝑖
−1

Jeffreys invariant prior, based on the Fisher information matrix:

𝜋 𝑎 = det 𝐼(𝑎)

𝐼 𝑎 𝑖𝑗 = න
𝜕

𝜕𝑎𝑖
ln 𝐿 𝑎 𝑦

𝜕

𝜕𝑎𝑗
ln 𝐿 𝑎 𝑦 𝐿(𝑎|𝑦)

Jacobian prior: For model with likelihood 𝐿 𝑎 𝑦 = 𝛾 𝑦 − 𝐹 𝑎 , 

𝜋 𝑎 = 𝐽(𝑎) det𝑊 𝐽 𝑎 = | det𝐷𝑎𝐹 𝑎 |



Relation between Bayesian posterior for 
REM and parameter density for RPM

Let 𝜂 𝑦 = 𝛾(𝑦 − ത𝑦) be the aggregate density obtained from data sample 𝑌 =
𝑦1, 𝑦2, … 𝑦𝑁 and let 𝜌 𝑎 = 𝜂 𝐹 𝑎 𝐽(𝑎)

Let 𝜎 𝑎 ത𝑦 be the Bayesian posterior with likelihood 
෨𝐿 𝑎|ത𝑦 = 𝛾(ത𝑦 − 𝐹(𝑎)) and prior 𝜋(𝑎)

Theorem: 𝜌 𝑎 = 𝜎(𝑎|ത𝑦) whenever 𝛾(𝑦) is symmetric and 𝜋 𝑎 = 𝐽(𝑎)

[SSZR19]

𝑀R

𝑀J

𝑀U

𝑀𝜋 is a sample of Bayesian posterior 𝜎 𝑎|ത𝑦 = 𝛾 ത𝑦 − 𝐹 𝑎 𝜋(𝑎), where 𝑈 𝑎 = 1, 𝑅 𝑎 = ς𝑖 𝑎𝑖
−1



Jacobian prior revisited
𝑌 = 𝐹 𝑎 + 𝐺

Likelihood: 𝐿 𝑎|𝑦 = 𝛾 𝑦 − 𝐹 𝑎

Posterior: 𝜎 𝑎|𝑦 = 𝐿 𝑎|𝑦 𝜋(𝑎)/𝑞(𝑦)

With Jacobian prior on parameters, the prior on data 𝑦 is uniform

𝑞 𝑦 = 𝐿 𝑎|𝑦 𝜋 𝑎 𝑑𝑎

= න𝛾 𝑦 − 𝐹 𝑎 𝐽 𝑎 𝑑𝑎 = න𝛾 𝑦 − 𝑧 𝑑𝑧 = 1

The Jacobian prior is noninformative in the original sense proposed by 
Bayes – it does not give preference to any observed data [Stigler, 1982]. 

[SSZR19]



𝐹(𝑎)

Nonlinear model

Commonly used interpretation of noninformative prior

𝑎

𝑞(𝑦)

Prior on data

𝑎

𝜋(𝑎)

Prior on parameters

• All parameters are equally likely
• Observations can be anticipated



𝑎

Nonlinear model

Bayes’ understanding of noninformative prior

𝐹(𝑎)

𝐽(𝑎)

𝑎Prior on parameters

𝑞(𝑦)

Prior on data

• Any data vector is equally likely
• Observations cannot be 

anticipated



Relation to least squares
Objective function minimization

𝑎∗ = arg min
𝑎


𝑗
𝑥𝑗 − 𝑥 𝑡𝑗; 𝑎

2

Maximum likelihood estimate

𝑎𝑀𝐿𝐸 = arg max
𝑎

𝐿(𝑎|𝑦) = arg max
𝑎

𝛾 𝑦 − 𝐹 𝑎 = 𝑎∗

The data 𝑦 is the most likely for model with the parameter 𝑎𝑀𝐿𝐸

Maximum a posteriori estimate

𝑎𝑀𝐴𝑃 = arg max
𝑎

𝜌(𝑎|𝑦) = arg max
𝑎

𝛾 𝑦 − 𝐹 𝑎 𝐽(𝑎)

The model with parameter 𝑎𝑀𝐴𝑃 is the most likely given observed data 𝑦



Applications to immunology
Data on time courses of 16 volunteers infected by Influenza A/Texas/91 
(H1N1) [Hayden , JAMA, 96]

6),16.7,0.80101.33 ,0.0347, 0.0373(),,,,( -5
0 =optcpV 

Classical parameter estimates

ሶ𝑉 = 𝑝𝐼 − 𝑐𝑉
ሶ𝐻 = −𝛽𝐻𝑉
ሶ𝐼 = 𝛽𝐻𝑉 − 𝛿𝐼



Ensemble trajectory prediction

Ensemble parameter distribution

,3.2,3.2)102.7 ,0.014, 0.25(),,,,( -5
0 =basecpV 



Parameter correlations – parameter distribution is organized in clusters



Optimal trajectories reflect bimodality of the posterior
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cVpIV
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Slow virus decay
Fast infected cell removal

Fast virus decay
Slow infected cell removal



Treatment 
starting at 
26 hrs

Treatment 
starting at 
50 hrs

Data from 
[Hayden , 
JAMA, 96]

The effect of neuraminidase inhibitor GG167 is simulated by decreasing p to 
1/20th of its value

Uncertainty quantification of antiviral treatment

Lower attrition 
of target cells



Viral phenotype characterization

PB1-F2 protein occurring in 1918 pandemic H1N1 strain increases apoptosis 
in monocytes, alters viral polymerase activity in vitro, enhances 
inflammation and increases secondary pneumonia in vivo.

Mice infected intranasally with 100 
TCID50 of influenza A virus PR8 
(squares) or PR8-PB1-F2(1918) 
(triangles).

[Smith et al., PloS ONE, 2011]



Comparison of model predictions and parameter distributions obtained 
using ensemble modeling.

PR8-PB1-F2PR8



Bacterial pneumonia
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Data from MF1 mice subjects 
infected by D39 pneumococcus 
strain [Kadioglu et al., Inf. and 
Immun., 2000]:

bacteria in lungs                                         bacteria in blood

Lung bacteria

PL

Blood bacteria

PB

Phagocytic cells
N

Damage
D

[MSELC14]



Bacterial pneumonia - strain 
dependence
Response to D39 pneumococcus infection in four mice strains
[Data from Kadioglu at al, I&I, 2000; Gingles et al., I&I, 2001; Kadioglu et al., JID, 2011]

[MSELC14]

s
e
v
e
r
i
t
y



Bacterial pneumonia - strain 
dependence
Response to D39 pneumococcus infection in four mice strains
[Data from Kadioglu at al, I&I, 2000; Gingles et al., I&I, 2001; Kadioglu et al., JID, 2011]

[MSELC14]

Strain 
dependent 
parameters
ℎ, 𝜈, 𝜉𝑛𝑙 , 𝜉𝑛𝑏
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Appendix



Uniform prior

Reciprocal prior

Jacobian prior

,3.2,3.2)102.7 ,0.014, 0.25(),,,,( -5
0 =basecpV 

Posterior distributions



Uniform prior

Reciprocal prior

Jacobian prior

Probabilistic trajectory predictions
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